A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang, Wei Meng Lim
VIRTUS, School of Electrical Electronic Engineering
Nanyang Technological University, Singapore 639798
Email: e090036@e.ntu.edu.sg

Abstract—A low phase noise 24/77 GHz dual-band sub-sampling PLL with a dual-band VCO is presented. Implemented in 65nm CMOS technology, the proposed PLL occupies an area of $900 \times 550 \ \mu \text{m}$. The measured phase noise is -120.0 and -108.5 dBc/Hz at 1 MHz offset in 24 and 77 GHz modes respectively. With 1.3 V supply, the power consumption is 26.4 and 31.5 mW for 24 and 77 GHz modes respectively. Compared with other state-of-the-art works, the proposed PLL has the best phase noise performance among all of reported PLLs for automotive radar applications.

Index Terms—Phase-locked loop (PLL), automotive radar, dual-band, sub-sampling, low phase noise, 24 GHz, 77 GHz, voltage-controlled oscillator (VCO), CMOS.

I. INTRODUCTION

Thanks to the advance of semiconductor technology, low cost millimeter-wave (mm-wave) circuits implemented in CMOS are demonstrated in recent years. The applications at mm-wave include high data rate communication, point-to-point wireless links, automotive radar, and mm-wave imaging. An automotive radar can make driving safe and comfortable. A radar operating in 24 GHz band is suitable for short or middle range applications including side-crash avoidance, parking assist, and so on. On the other hand, a 77 GHz radar is good for long range applications such as adaptive cruise control. The automotive radar combined both 24 and 77 GHz bands is desired to provide a complete solution and reduce area and cost [1].

Phase-locked loop (PLL) is an important component in the transceiver. The challenges of mm-wave PLL design are high frequency, wide locking range, low phase noise, and low power. However, generally there are trade-offs between these performances in CMOS technology. The PLL requirements for automotive radars are demanding especially the phase noise, because the close-in phase noise is a parameter of very strong influence to the resolution and sensitivity of a radar system. Many 24 or 77 GHz band CMOS PLLs have been reported, but their phase noise are limited by the classical PLL structure [1]–[3]. On the other hand, sub-sampling PLL has the potential of low phase noise by adopting sub-sampling phase detector (SSPD) and removing the noisy dividers [4], [5].

In this paper, a 24/77 GHz dual-band sub-sampling PLL is demonstrated in 65 nm CMOS technology. A dual-band VCO that can work in 24/77 GHz bands to save the area is presented.

II. DUAL-BAND VCO

To realize the dual-mode VCO, the dual-band loading is adopted. A properly designed fourth-order passive LC tank can provide two required resonant frequencies. Fig. 1(a) shows the schematic of a dual-band LC tank, where all of the components are ideal. Its input impedance (Z_{in}) can be expressed as

$$Z_{in} = \frac{\omega_{osc1} \omega_{osc2}}{s^4 L_1 C_1 L_2 C_2 + s^2 (L_1 C_1 + L_2 C_2) + 1}.$$ (1)

The circuit oscillates if the denominator of Z_{in} goes to zero. Consequently, the two oscillation frequencies, ω_{osc1} and ω_{osc2},
are given by
\[\omega_{osc1,2} = \frac{1}{2} \left(\omega_1^2 (1 + \alpha) + \omega_2^2 + \sqrt{\left((\omega_1 + \omega_2)^2 + \alpha \omega_1^2 \right) \left((\omega_1 - \omega_2)^2 + \alpha \omega_1^2 \right)} \right), \] (2)
where \(\omega_1 = 1/\sqrt{L_1C_1} \), \(\omega_2 = 1/\sqrt{L_2C_2} \), and \(\alpha = L_1/L_2 \).

Fig. 1(b) plots the simulated frequency response of \(V_1 \) and \(V_2 \). The magnitudes of both \(V_1 \) and \(V_2 \) peak at the two resonant frequencies \(\omega_{osc1} \) and \(\omega_{osc2} \). The phases of \(V_1 \) and \(V_2 \) at the first resonant frequency \(\omega_{osc1} \) are both 0°. In other words, \(V_1 \) and \(V_2 \) are in phase at \(\omega_{osc1} \). On the other hand, the phases of \(V_1 \) and \(V_2 \) at \(\omega_{osc2} \) are 0° and -180° respectively, and hence \(V_1 \) and \(V_2 \) are in anti-phase at \(\omega_{osc2} \). This important observation provide a solution to switch oscillation band between \(\omega_{osc1} \) and \(\omega_{osc2} \). Let us suppose that the gain condition of Barkhausen criteria is always met. If we force \(V_1 \) and \(V_2 \) to be in phase, the tank would resonate at \(\omega_{osc1} \). If \(V_1 \) and \(V_2 \) are in anti-phase, the resonant frequency will be \(\omega_{osc2} \).

The schematic of the proposed dual-band VCO is shown in Fig. 2. \(C_1 \) and \(C_2 \) include the parasitic capacitance of devices. The cross-coupled pair \(M_1 \) and \(M_2 \) is used to compensate the loss in tank. The control signal \(B24 \) and its inversion signal \(B77 \) are used to select the oscillation mode. When \(B24=1 \) and \(B77=0 \), tail current \(I_{B24} \) is on and \(I_{B77} \) is off, as shown in Fig. 3(a). \(M_6 \) will force \(V_{1n} \) to be in anti-phase with \(V_{2p} \). Since \(V_{1p} \) and \(V_{1n} \) are differential, \(V_{1p} \) is in phase with \(V_{2p} \). The phase condition of the peak at \(\omega_{osc1} \) in Fig. 1(b) is met, so the VCO works in 24 GHz mode. Similarly, When \(B24=0 \) and \(B77=1 \), tail current \(I_{B77} \) is on and \(I_{B24} \) is off, as shown in Fig. 3(b). \(M_3 \) will force \(V_{1p} \) to be in anti-phase with \(V_{2p} \), so the VCO works in 77 GHz mode. Compared with other band-switching methods such as switched-capacitor and switched-inductor, the proposed method has no penalty of lowering tank quality factor due to loss in switches.

III. DUAL-BAND SUB-SAMPLING PLL

Fig. 4 shows the schematic of the proposed dual-band sub-sampling PLL in a dual-band automotive radar system. The radar can be the pulse-based radar, or the frequency modulated continuous-wave (FMCW) radar. For the latter, an FMCW generator such as direct digital frequency synthesizer (DDFS) should be used as the reference input. The proposed PLL has been integrated with a dual-band low noise amplifier (LNA) [6] and a wideband mixer in a dual-band receiver to reduce the area. It can also work as the local oscillator (LO) in a two-step down-conversion W-band imaging system.

In order to reduce phase noise from divider, phase frequency detector (PFD), and charge pump (CP), the sub-sampling structure is adopted. The sub-sampling function can work as long as the ratio \(N = f_{fb}/f_{in} \) is an integer. In our design, \(N \) is 16 for \(f_{in} \) is about 1.5 GHz. Thus, to avoid locking to a wrong frequency, the tuning range of 24 GHz mode should be less than 1.5 GHz, and that of 77 GHz mode less than 4.5 GHz. Since the divide-by-16 divider chain is removed, there is no noise contributed from dividers in 24 GHz mode. Even in 77 GHz mode, the divider’s noise contribution is negligible. Moreover, the SSPD and CP noise in sub-sampling PLL is not multiplied by \(N^2 \) compared to that of a classical PLL [4]. Therefore, the phase noise of sub-sampling PLL can be very low if the reference input is clean.

The dual-band VCO, as discussed in the last section, is used to generate 24 or 77 GHz LO signal. For better isolation and driving capability, a dual-band 24/77 GHz buffer is inserted between the VCO and mixer or PA. Similar to the dual-band VCO, the dual-band buffer also uses a fourth-order \(LC \) tank as its load.

An dual-mode injection-lock oscillator (ILO), as shown in Fig. 5, is employed to realize two division modulus: one and three. When the PLL runs in 24 GHz mode, the ILO...
Fig. 4. Schematic of the proposed dual-band sub-sampling PLL in a dual-band automotive radar system.

Fig. 5. Schematic of injection-locked oscillator (ILO) used as 24 GHz buffer or 77 GHz divide-by-3 divider.

severs as a 24 GHz buffer. While the PLL is switched to 77 GHz mode, the ILO works as a divide-by-3 injection-locked frequency divider (ILFD). For the second mode, the required oscillation frequency (about 25.7 GHz) of ILFD is a little higher than 24 GHz, so another varactor is used to tune its oscillation frequency. The voltage V_b can be tuned externally to compensate the frequency-drift due to PVT variations. A 24 GHz buffer is used to improve the driving capability for measurement.

The SSPD is a passive sample-and-hold circuit as shown in Fig. 6(a). It sub-samples the output of dual-mode ILO, f_{fb}, by using the clean reference input, f_{in}. The phase error between f_{fb} and f_{in} will be converted into the differential output voltage of SSPD, V_{sam}. A self-bias inverter is inserted to prevent the ILO affecting by the periodic change of input impedance of SSPD.

The output of SSPD, V_{sam}, is fed into the transimpedance amplifier charge pump (TIA-CP) and is convert into charge/discharge current, as shown in Fig. 6(b). Generally the loop bandwidth of sub-sampling PLL is too large for FMCW application. To reduce the loop bandwidth and maintain sufficient phase margin, large capacitor in LPF may be used but it is area consuming. One effective method is to reduce the CP turn-on period. The pulse generator shapes the f_{in} into narrow pulses to reduce the loop bandwidth. Another practical method is to reduce the charge/discharge current. In our design, the charge/discharge current can be programmed to tune the loop bandwidth.

Next to the CP, the second-order low-pass filter (LPF) filters the output of CP, and presents its DC voltage to tune the VCO.

One often neglected block of the low phase noise PLL is the reference input buffer. In fact, the reference buffer will contribute significant phase noise if its slew-rate is small, especially when the reference is a slow sine-wave [4]. Thus, the driving capability of reference buffer should be large enough to ensure a high slew-rate and hence low phase noise.

IV. MEASUREMENT RESULTS AND CONCLUSION

The proposed dual-band PLL is implemented in GLOBAL-FOUNDRIES 65 nm CMOS technology. The die photograph is shown in Fig. 7. The area of PLL including pads is about 900 $\mu m \times 550 $ μm. The power consumption of the PLL including all buffers is 26.4 and 31.5 mW from 1.3 V supply for 24 and 77 GHz modes respectively. The output is taken from 24 GHz buffer through a 50 Ω grounded coplanar waveguide (GCPW) transmission line, and directly measured by Agilent N5247A and E5052B.

The operation range of the PLL is from 24.12 to 24.88 GHz for 24 GHz mode. While in 77 GHz mode, the PLL is locked from 75.41 to 77.23 GHz. Fig. 8 illustrates the output

Fig. 6. Schematics of (a) sub-sampling phase detector (SSPD) and (b) tunable transimpedance amplifier charge pump (TIA-CP).
spectrum in 24 GHz mode. The reference spur is about 38 dB lower than the carrier.

Fig. 9 shows the phase noise of PLL. For small loop bandwidth, the PLL phase noise in 24 GHz mode is -120.0 dBc/Hz at 1 MHz offset. In 77 GHz mode, the PLL phase noise is about -118.0+20log(3)=-108.5 dBc/Hz at 1 MHz offset for the measured output $f_{\text{out}} = f_{\text{vco}}/3$. For large loop bandwidth, the PLL phase noise is -113.4 and -103.2 dBc/Hz at 1 MHz offset in 24 and 77 GHz modes respectively. The measured performance of dual-band PLL is summarized in Table I.

A low phase noise 24/77 GHz dual-band sub-sampling PLL for automotive radar applications is presented and implemented in 65nm CMOS technology. A dual-band VCO is used to provide 24/77 GHz LO signals. The proposed PLL can achieve -120.0 and -108.5 dBc/Hz at 1 MHz offset in 24 and 77 GHz modes respectively. The power consumption is 26.4 and 31.5 mW from 1.3 V supply for 24 and 77 GHz modes respectively. To the best of authors’ knowledge, this is the first 24/77 GHz dual-band PLL in CMOS technology, and it has the best phase noise performance among all of reported PLLs for automotive radar applications.

REFERENCES

TABLE I

<table>
<thead>
<tr>
<th>Reference</th>
<th>Technology</th>
<th>Supply Voltage (V)</th>
<th>Reference Frequency (MHz)</th>
<th>Frequency Range (GHz)</th>
<th>Phase Noise (dBc/Hz) at 1 MHz Offset</th>
<th>Power Consumption (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>0.18μm BiCMOS</td>
<td>2.5</td>
<td>100</td>
<td>23.8~26.95</td>
<td>-114</td>
<td>50</td>
</tr>
<tr>
<td>[2]</td>
<td>90nm CMOS</td>
<td>1.2</td>
<td>75</td>
<td>75.6~78.5</td>
<td>-103.5</td>
<td>75</td>
</tr>
<tr>
<td>[3]</td>
<td>65nm CMOS</td>
<td>1.2</td>
<td>700</td>
<td>78.1~78.8</td>
<td>-85.3</td>
<td>101</td>
</tr>
<tr>
<td>[5]</td>
<td>65nm CMOS</td>
<td>1.2</td>
<td>~1750</td>
<td>79.2~87.2</td>
<td>-100.2</td>
<td>73</td>
</tr>
<tr>
<td>This Work</td>
<td>65nm CMOS</td>
<td>1.3</td>
<td>~1500</td>
<td>24.12~24.88</td>
<td>-120.0</td>
<td>26.4</td>
</tr>
</tbody>
</table>

Fig. 7. Die photograph of the proposed PLL.

Fig. 8. Measured output spectrum of the proposed PLL in 24 GHz mode.

Fig. 9. Measured phase noise of the proposed PLL with (a) small and (b) large loop bandwidth.