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WORST-CASE MECHANISM DESIGN VIA BAYESIAN ANALYSIS∗

XIAOHUI BEI† , NING CHEN† , NICK GRAVIN‡ , AND PINYAN LU§

Abstract. Budget feasible mechanism design is the study of procurement combinatorial auc-
tions in which the sellers have private costs to produce items, and the buyer (auctioneer) aims to
maximize her valuation function on a subset of purchased items under the budget constraint on
the total payment. One of the most important questions in the field is “which valuation domains
admit truthful budget feasible mechanisms with ‘small’ approximations to the social optimum?”
Singer [Proceedings of the 51st FOCS, IEEE Press, Piscataway, NJ, 2010, pp. 765–774] showed that
submodular functions have a constant approximation mechanism. Dobzinski, Papadimitriou, and
Singer [Proceedings of the 12th ACM Conference on Electronic Commerce, ACM, New York, 2011,
pp. 273–282] gave an O(log2 n) approximation mechanism for subadditive functions and remarked
that “A fundamental question is whether, regardless of computational constraints, a constant-factor
budget feasible mechanism exists for subadditive functions.” In this paper, we give an affirmative
answer to this question. To this end we relax the prior-free mechanism design framework to the Baye-
sian mechanism design framework (these are two standard approaches from computer science and
economics, respectively). Then we convert our results in the Bayesian setting back to the prior-free
framework by employing Yao’s minimax principle. Along the way, we obtain the following results: (i)
a polynomial time constant approximation for XOS valuations (a.k.a. fractionally subadditive valu-
ations, a superset of submodular functions), (ii) a polynomial time O(log n/ log log n)-approximation
for general subadditive valuations, (iii) a constant approximation for general subadditive functions
in the Bayesian framework—we allow correlation in the distribution of sellers’ costs and provide a
universally truthful mechanism, (iv) the existence of a prior-free constant approximation mechanism
via Yao’s minimax principle.
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1. Introduction. Consider a procurement auction problem where there is a
buyer who wants to purchase resources from a set of agents A. Each agent i ∈ A is
able to supply a resource at an incurred cost c(i). The buyer has a budget B on the
compensation that could be distributed among the agents, and a function v(·) that
describes the value of the buyer for each subset of A. This defines a natural optimiza-
tion problem: find a subset S ⊆ A that maximizes v(S) subject to

∑
i∈S c(i) ≤ B.

The budgeted optimization problem has been considered in a variety of domains with
respect to different valuation functions, e.g., additive (a.k.a. knapsack) and submod-
ular [48].

The suppliers, as self-interested agents, may want to get as much compensation
as possible. In particular, agent i may conceal his true incurred cost c(i) (which is
known only to himself) and claim any amount b(i) instead. Thus we face an additional
challenge of dealing with selfish and strategic behavior of the agents. To cope with
this problem we adopt a mechanism design approach: given submitted bids b(i) from
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all agents, a mechanism determines the winning set S ⊆ A and the payment p(i) to
each winner i ∈ S. A mechanism is called truthful (a.k.a. incentive compatible) if
it is in the best interest of every agent to bid his true cost, i.e., claim b(i) = c(i).
Truthfulness is one of the central solution concepts in mechanism design, and indeed
might be desirable in the context of procurement auctions.

Our mechanism design problem has an important and practical ingredient: the
budget; i.e., the total payment of a mechanism should not exceed B. In single-
parameter domains where the private information of every individual is a single value
(which is true in our case), a monotone allocation rule with associated threshold
payments provides a sufficient and necessary condition for truthfulness [3, 39]. How-
ever, it may not necessarily generate a budget feasible solution. A number of well-
known truthful designs, such as the seminal Vickrey–Clarke–Groves (VCG) mecha-
nism [19, 31, 49], do not apply anymore, and new ideas have to be developed.

Another unavoidable issue caused by the budget constraint is that, unlike when
using the VCG mechanism, which always generates a socially optimal solution, we
cannot hope to have a solution that is both socially optimal and budget feasible. In-
deed, for many simple valuations that exhibit complements [46], the approximation to
the optimum of any budget feasible mechanism can be arbitrarily bad. The following
simple example illustrates the problem with non–complement-free valuations. Con-
sider the objective in which there is a crucial item i∗ and where the valuation v(S)
is |S| if i∗ ∈ S and 0 otherwise. It is easy to see that no approximation guarantee
can be achieved for this valuation, as the seller of the critical item i∗ can extract the
whole budget (publicly known) from the auctioneer. In this sense the complement-free
valuations are the most general class of functions for which we can hope to obtain
budget feasible mechanisms. This impossibility result naturally raises the following
question: which valuation domains admit truthful budget feasible mechanisms that
are close to the socially optimal solution? The answer to this question depends on
the properties of the valuation functions under consideration. Since valuations with
complements are not well aligned with the budget constraint, the research in this
area has always been focused on complement-free valuations. In particular, given the
following hierarchy of valuation classes [36],

additive ⊂ gross substitutes ⊂ submodular ⊂ XOS ⊂ subadditive,

which ones admit constant approximation budget feasible mechanisms?
Singer [46] initiated the study of approximate budget feasible mechanism design

and gave constant approximation mechanisms for additive and submodular valuations.
In subsequent work, Dobzinski, Papadimitriou, and Singer [25] considered subadditive
functions and showed an O(log2 n) approximation. They also remarked in [25]:

A fundamental question is whether, regardless of computational constraints,
a constant-factor budget feasible mechanism exists for subadditive func-
tions.

In the present paper, we give a positive answer to this question, albeit we don’t
obtain an explicit mechanism, but rather show its existence.

1.1. Our results and techniques. Our final result is the following.
Theorem 1. There exists a truthful budget feasible mechanism for subadditive

functions with a constant approximation ratio.
In Theorem 1, the approximation guarantee must hold for every instance of the

costs, i.e., in the worst case over all possible inputs. Such prior-free worst-case analysis
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was used in all previous works on budget feasible mechanism design [17, 25, 29, 46] and
is the standard framework in this particular area and broadly in theoretical computer
science. However, to obtain our main result, as an intermediate step we cast the
problem into the Bayesian framework.

Bayesian mechanism design. The Bayesian analysis framework [39] is a standard
approach in economics and game theory. In the Bayesian analysis it is assumed that
the agents’ private information (c(i)’s in our model) is drawn from a fixed distribution
and the performance is measured ex ante, i.e., in expectation over this distribution.
Bayesian analysis offers a realistic framework that often provides more flexibility than
analysis in the worst case. Bayesian mechanism design, in particular, has received
significant attention in the computer science community in the past few years; see,
e.g., [9, 10, 13, 14, 15, 20, 26, 32, 33, 34, 35]. The central result of this paper is the
following theorem.

Theorem 2. There exists a constant approximation truthful budget feasible Baye-
sian mechanism for subadditive functions for any given distribution of the costs.1

Theorem 2 is a weaker version of Theorem 1, as any approximation result in
the worst case implies at least as good approximation guarantees in the Bayesian
framework. Nevertheless, this result serves as a useful and necessary step towards
understanding the problem and obtaining our final result in the prior-free framework.
Furthermore, it should be noted that our result does not rely on the common assump-
tions of Bayesian analysis in the following aspects.

• Notion of truthfulness. In most of the previous work on Bayesian mechanism
design with a focus on social welfare maximization, e.g., [9, 14, 32, 33], the
considered solution concept is Bayesian truthfulness. That is, truth-telling
is in expectation a dominant strategy when other agents’ profiles are drawn
from the given prior distribution. Our mechanism guarantees universal truth-
fulness, meaning that truth-telling is the best that an agent can do for any
instance of other agents’ reported costs and for any coin flips of the mecha-
nism. Stronger than Bayesian truthfulness, universal truthfulness has already
been considered in Bayesian mechanism design prior to our work, e.g., in [13],
however, with a different focus on profit maximization.

• Distributional assumptions. The vast majority of previous related work con-
siders only independent distributions, e.g., [9, 18, 32, 33, 34]. Our results
apply to distributions that allow correlations of the costs. Correlation among
different pieces of private information is a natural phenomenon arising in prac-
tice and has been considered in optimal auction design [23, 37, 42, 43, 44].
In our setting, correlation among private costs of different agents appears to
be well motivated. For example, if the price on the crude oil goes up, the
production costs go up as well simultaneously for every agent.

Back to prior-free mechanism design. After taking a detour to the Bayesian
framework, we return to the prior-free framework and show that our Bayesian re-
sult implies the existence of a constant approximation truthful prior-free mechanism.
It is worth noting that this result comes from a rather general observation: In an
arbitrary problem setting, suppose that we have a mechanism with a certain approx-
imation guarantee in the Bayesian framework which both (i) is universally truthful
and (ii) allows for arbitrary correlated distributions. Then, using Yao’s minimax

1The result holds for any distribution with a finite support. For distributions with infinite
support, we require a certain technical integrability assumption for any subset of individual
costs.
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principle, one can always render guarantees in the Bayesian framework into the same
approximation guarantees in the worst-case framework.

Techniques. In the design of budget feasible mechanisms, the major approach
used in previous works [17, 25, 46] is based on a simple idea of selecting winning
agents sequentially and greedily. The main technical challenge in these methods is
to define a good selection rule which ensures that (i) the final selected set of winners
has a value close to the optimum and (ii) respective threshold payments are budget
feasible. Our mechanisms, from a high level structural point of view, use a different
set of ideas and methods.

First, we employ the idea of random sampling, a standard tool from the mecha-
nism design literature on profit maximization [30]. In our setting random sampling
works as follows. We sample uniformly at random a test set T and find the (approxi-
mately) optimal budget feasible solution on T . This solution gives us a close estimate
on the value of the optimal solution for the remaining agents with high probability.
We use set T only for “evaluation” purposes and, therefore, eliminate all incentive
issues with the agents within. Using the estimate from T as a threshold, we then
select the final set of winners from the remaining agents A \ T .

Second, we consider the optimization problem maxS⊂A\T v(S) s.t. c(S) ≤ B and
observe several remarkable incentive and approximation properties of the correspond-
ing Lagrangian function L(X, t) = v(X)−t·c(X). The estimated value from a random
sample T helps us to calibrate the parameter t in L(X, t). For the class of fractionally
subadditive (a.k.a. XOS) functions this allows us to show the following.

Theorem 3. There is a budget feasible truthful mechanism for XOS functions
with a constant approximation ratio.

To obtain this result we rely on the characteristic property of XOS functions, i.e.,
that any XOS function is a maximum over a collection of linear functions. We reduce
further the set of potential winners to S∗ = argmaxX⊂A\T L(X, t) and substitute v(·)
with a linear supporting function f for the set S∗. We then select the final winning set
from S∗ by running a truthful budget feasible mechanism for the additive valuation
f .

Third, for subadditive valuations, we make use of the extra knowledge about prior
distribution in the Bayesian setting. In particular, we generate a cost vector according
to our prior distribution and use it as threshold payments for the prospective win-
ners. Our choice of the threshold vector ensures certain symmetry between random
thresholds and private costs, which in combination with subadditivity implies good
approximation guarantees.2 It is worth noting that the mechanism for subadditive
valuations bears a resemblance to the prior-free mechanism for XOS valuations. In
particular, in the Bayesian setting we still sample the test set T and estimate the opti-
mum for A\T from this sample rather than from the prior distribution. Interestingly
and perhaps surprisingly, while the latter approach works well when the private costs
are drawn independently, it fails when costs are correlated (see relevant examples in
section 4).

1.2. Computational aspects. In this paper, we mainly focus on the approx-
imation ratio caused by the inherent nature of the truthfulness requirement, and
computational issues are not our main concern. Due to the impossibility results for

2Results on the Bayesian price of anarchy in simultaneous auctions with subadditive bidders [28]
use unilateral deviations where every single bidder, competing with a random price vector, submits a
vector of random bids drawn from the same distribution as the random prices. This bidding strategy
was inspired by our random-thresholds mechanism.



1432 XIAOHUI BEI, NING CHEN, NICK GRAVIN, AND PINYAN LU

fractionally subadditive valuations with value queries by Singer [46], even without
the truthfulness requirement, we are forced to focus on more powerful oracles when
studying the computational complexity. Following are some claims regarding the
computational complexity for our results:

• Theorem 3 actually implies a polynomial time mechanism if we assume XOS
and demand oracles. As an example, the matching valuations, which are XOS
but not submodular, have polynomial time algorithms with XOS and demand
oracles.

• Theorem 2 also can be implemented in polynomial time if, in addition to
the XOS and demand oracles, we have conditional sampling access to the
distribution of cost vectors.

• Theorem 1 is a purely existential result and may not imply any computation-
ally efficient mechanisms, as the existence of the mechanism is based on the
minimax principle rather than an explicit construction.

We note that one can design a brute-force O(log n) approximation for the sub-
additive valuation v by running an XOS mechanism for the XOS approximation v̂ of
subadditive v, i.e., such an XOS function v̂ that v̂(S) ≤ v(S) ≤ O(log n)v̂(S) for any
S ⊂ A. However, our following result shows that the log(n) barrier is not the right
bound for the polynomial time mechanisms for subadditive valuations.

Theorem 4. There is a budget feasible truthful mechanism for subadditive valu-
ations with an O

( logn
log logn

)
approximation ratio that runs in polynomial time with the

access to demand oracle.

1.3. Related work. Our work falls into the field of algorithmic mechanism de-
sign, which is a fascinating area initiated by the seminal work of Nisan and Ronen [40].
There are many mechanism design models (see, e.g., [41] for a survey).

As mentioned earlier, the study of approximate mechanism design with a bud-
get constraint was originated by Singer [46], and constant approximation mechanisms
were given for additive and submodular functions. The approximation ratios were
later improved in [17]. Dobzinski, Papadimitriou, and Singer [25] considered sub-
additive functions and showed an O(log2 n) approximation mechanism. A better
approximation for a budget feasible mechanism is known when one has an additional
“large markets” assumption [2]. Ghosh and Roth [29] considered a budget feasible
mechanism design model for selling privacy, where there are externalities for each
agent’s cost. All these models considered prior-free worst-case analysis.

For Bayesian mechanism design, Hartline and Lucier [33] first proposed a Baye-
sian reduction in single-parameter settings that converts any approximation algo-
rithm to a Bayesian truthful mechanism that approximately preserves social wel-
fare. The black-box reduction results were later improved to multiparameter settings
in [9] and [32] independently. Chawla, Malec, and Malekian [14] considered budget-
constrained agents and gave Bayesian truthful mechanisms in various settings. A
number of other Bayesian mechanism design works considered profit maximization,
e.g., [10, 13, 15, 20, 21, 34]. Ours is the first to consider Bayesian analysis in budget
feasible mechanisms with a focus on the valuation (social welfare) maximization. In a
subsequent work, Balkanski and Hartline [7] studied Bayesian budget feasible posted
pricing mechanisms that approximate the value obtained by the Bayesian optimal
mechanism.

2. Preliminaries. In a marketplace, there are n agents (or items), denoted by
A, and a single buyer, who runs the auction. Each agent i ∈ A incurs a privately
known cost c(i) ≥ 0 when delivering a service or selling his item to the buyer. We
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denote by c = (c(i))i∈A the cost vector of the agents. For any given subset S ⊆ A,
the buyer derives publicly known value v(S). We assume that v(∅) = 0 and that the
valuation function is monotone; i.e., v(S) ≤ v(T ) for any S ⊂ T ⊆ A. A centralized
authority (the buyer) wants to pick a subset of agents with maximum possible value,
given a budget B to compensate agents’ incurred costs, i.e., max

S⊆A
v(S) s.t. c(S) =∑

i∈S c(i) ≤ B. We denote the optimal solution to the latter optimization problem
by opt(A) (or opt(c)) and its value by v(opt(A)).

We consider XOS and subadditive valuations in the paper; both are rather general
classes and contain a number of well studied functions as special cases, e.g., additive,
gross substitutes, and submodular:

• Subadditive (a.k.a. complement-free): v(S) + v(T ) ≥ v(S ∪T ) for any S, T ⊆
A.

• XOS (a.k.a. fractionally subadditive, as defined in [27]): there is a set of linear
functions f1, . . . , fm such that

v(S) = max
{
f1(S), f2(S), . . . , fm(S)

}
for each S ⊆ A.

Note that the number of functions m can be exponential in n = |A|. The
class of XOS functions is equivalent to the class of fractionally subadditive
functions [27], which is a proper subclass of subadditive valuations.

The representation of a subadditive or XOS valuation function has size exponen-
tial in n. Instead we assume that we are given a query access to a demand oracle,
which, for any given price vector p(1), . . . , p(n), returns a subset

T ∈ argmax
S⊆A

(
v(S)−

∑
i∈S

p(i)

)
in O(1) time. It was shown in [46] that a weaker value query oracle is not sufficient to
obtain a constant approximation polynomial time mechanism even for XOS valuation,
and thus later work [23] adopted stronger computational model with demand oracles.
We also assume that we have access to an XOS oracle (as defined in [24]), which allows
one to find a supporting linear function fi(S) for any specified set S in O(1) time; i.e.,
for a given set S the oracle returns a linear function fS such that v(S) = fS(S) and
v(T ) ≥ fS(T ) for any T ⊆ A.

Agents, as self-interested entities, have their own objective as well; each agent i
may not tell his true privately known cost c(i) but, instead, submit a bid b(i) strate-
gically. Upon receiving b(i) from each agent, a mechanism determines an allocation
S ⊆ A of the winners and a payment p(i) to each i ∈ A. We assume that the mecha-
nism has no positive transfer (i.e., p(i) = 0 if i /∈ S) and is individually rational (i.e.,
p(i) ≥ b(i) if i ∈ S).

In a mechanism, each agent bids strategically to maximize her utility, which is
p(i)− c(i) if i is a winner and 0 otherwise. We say a mechanism is truthful if it is in
the best interest of each agent to report her true cost, i.e., b(i) = c(i). For randomized
mechanisms, we consider universal truthfulness in this paper: a randomized mecha-
nism is called universally truthful if it is a distribution over deterministic truthful
mechanisms.

Our model is in the single parameter domain. Thus, by the well-known character-
ization [3, 39], any truthful mechanism can be equivalently described as a monotone
allocation rule with the corresponding threshold payments. We, therefore, may ex-
plicitly specify only the allocation rule of our mechanism, and usually omit description
of the payments.
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A mechanism is said to be budget feasible if its total payment is within the budget
constraint, i.e.,

∑
i p(i) ≤ B. Our goal in this paper is to design truthful and budget

feasible mechanisms for XOS and subadditive valuations in two frameworks: prior-free
and Bayesian.

We first establish the following technical lemma about random sampling, which
is used in many places in our analysis.

Lemma 2.1. Consider any subadditive function v(·). For a given subset S ⊆ A
and a positive integer k we assume that v(S) ≥ k · v(i) for any i ∈ S. Further,
suppose that S is divided uniformly at random into two groups T1 and T2. Then, with
probability of at least 1

2 , we have v(T1) ≥ k−1
4k v(S) and v(T2) ≥ k−1

4k v(S).

Proof. We first claim that there are disjoint subsets S1 and S2 with S1 ∪ S2 = S
such that v(S1) ≥ k−1

2k v(S) and v(S2) ≥ k−1
2k v(S). This can be seen by the following

recursive process: Initially let S1 = ∅ and S2 = S; we move items from S2 to S1 one by
one in an arbitrary order, until the point when v(S1) ≥ k−1

2k v(S). Consider the S1, S2

at the end of the process; we claim that at this point, we also have v(S2) ≥ k−1
2k v(S).

Note that v(S) ≤ v(S1)+v(S2). Let i be the last item moved from S2 to S1; therefore,
v(S1\{i}) < k−1

2k v(S), which implies that v(S2∪{i}) > k+1
2k v(S). Thus, v(S2)+v(i) ≥

v(S2 ∪ {i}) > k+1
2k v(S). As v(i) ≤ 1

kv(S), we know that v(S2) > k−1
2k v(S).

Consider sets X1 = S1 ∩ T1, Y1 = S1 ∩ T2, X2 = S2 ∩ T1, and Y2 = S2 ∩ T2. Due
to subadditivity we have k−1

2k v(S) ≤ v(S1) ≤ v(X1) + v(Y1); hence, either v(X1) ≥
k−1
4k v(S) or v(Y1) ≥ k−1

4k v(S). Similarly, we have that either v(X2) ≥ k−1
4k v(S) or

v(Y2) ≥ k−1
4k v(S). With probability 1

2 the most valuable parts of S1’s partition and
S2’s partition get into different sets T1 and T2, respectively. Thus the lemma follows.

3. Prior-free mechanism design. In this section, we first consider design-
ing budget feasible mechanisms for XOS functions in the prior-free setting. Here
we evaluate a mechanism according to its approximation ratio, which is defined as
maxc

v(opt(c))
M(c) , where M(c) is the (expected) value of a mechanism M on instance

c = (c(i))i∈A and v(opt(c)) is its optimal value. Without loss of generality, we as-
sume that c(i) ≤ B for any i ∈ A.

We recall that XOS function v(·) is given by

v(S) = max {f1(S), f2(S), . . . , fm(S)} for any S ⊆ A,
where each fj(·) is a nonnegative additive function, i.e., fj(S) =

∑
i∈S fj(i).

In our mechanism, we use randomized mechanism Additive-mechanism for ad-
ditive valuation functions as an auxiliary procedure, where Additive-mechanism is
a universally truthful mechanism and has an approximation factor of at most 3 (see,
e.g., Theorem B.2 of [17]).

Algorithm 1 XOS-random-sampling.
1. Pick each item i.i.d. with probability 1

2 into group T .
2. Compute an optimal solution opt(T ) for items in T given budget B.
3. Set a threshold t = v(opt(T ))

8B .
4. Find a set S∗ ∈ argmaxS⊆A\T

{
v(S)− t · c(S)

}
.

5. Find additive function f s.t. f(S∗) = v(S∗), f(X) ≤ v(X) ∀X ⊆ A.
6. Run Additive-mechanism for f(·) on the set S∗ and budget B.
7. Output the winning set of Additive-mechanism.

In the above mechanism, we first sample in expectation half of the items to form
a testing group T , and compute an optimal solution for T with a budget constraint
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B. By Lemma 2.1, we know that v(opt(A)) ≥ v(opt(T )) ≥ k−1
4k v(opt(A)) and

v(opt(A \ T )) ≥ k−1
4k v(opt(A)) with a probability of at least 1

2 . That is, we are able
to learn the rough value of the optimal solution by random sampling and still have a
constant fraction of the optimal solution within the remaining items. We then set a
threshold t for the proper value-per-cost conversion rate. We find a subset S∗ ⊆ A\T
with the largest difference between its value and cost, multiplied by the threshold t.
(In the computation of S∗, if there are multiple choices, ties are broken in a fixed
order.) Finally, we find a supporting linear function of the XOS valuation v(·) for the
set S∗ and run the truthful mechanism for this linear function on the set S∗.

XOS-random-sampling extensively uses demand queries, and as such it bears
resemblance to the O(log2 n) approximation mechanism of Dobzinski, Papadimitriou,
and Singer [25] for subadditive valuations. However, their mechanism does not use
random sampling to estimate the value of the optimal solution, but rather builds
on the ideas of a cost-sharing scheme, which we also employ in our mechanism SA-
random-sampling with sublogarithmic approximation ratio.

Our mechanism is designated for XOS functions. It is also used as an auxiliary
procedure for more general subadditive functions in the subsequent sections. We note
that the mechanism can be implemented in polynomial time if we are given access to
XOS and demand query oracles.3

Note that in step 4, the function v(S) − t · c(S) that we maximize is simply the
Lagrangian function

v(S)− x · c(S) + x ·B

(x ·B is a fixed constant) of the original optimization problem max
S
v(S) subject to

c(S) ≤ B. While we do not know the actual value of the variable x in the Lagrangian,
a carefully chosen parameter t in the sampling step with a high probability ensures
that max

S

{
v(S) − t · c(S) + t · B

}
gives a constant approximation of the optimum

max
S

{
v(S)− x · c(S) + x ·B

}
of the Lagrangian, which is precisely the target value

v(opt(A)).
The linearity of the Lagrangian, together with the subadditivity of the valuations,

is important in deriving the following properties.

Claim 3.1 (Claim 3.1 in [25]). Given the threshold t, subset S∗, and additive
function f defined in the XOS-random-sampling, for any S ⊆ S∗, f(S)−t·c(S) ≥ 0.

Proof. Suppose for the sake of contradiction that there exists a subset S ⊆ S∗

s.t. f(S) − t · c(S) < 0. Let S′ = S∗ \ S. Since f is an additive function, we have
c(S′) + c(S) = c(S∗) and f(S′) + f(S) = f(S′ ∪ S) = f(S∗) = v(S∗). Thus,

v(S′)− t · c(S′) ≥ f(S′)− t · c(S′)
= v(S∗)− t · c(S∗)−

(
f(S)− t · c(S)

)
> v(S∗)− t · c(S∗),

which contradicts the definition of S∗.

The following claim says that any agent in S∗ cannot manipulate the selection of

3In fact, in step 2 of the procedure, we can use any approximate solution. Step 4 requires
a single query to the demand oracle. In step 5 we need to use XOS oracle [24]. For some
XOS valuations like in the matching setting (the value of a subset of edges is equal to the
size of the largest matching induced by them), XOS and demand oracles can be implemented
in polynomial time.
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the set S∗ by bidding a smaller cost. This fact is critical for the monotonicity, and
thus the truthfulness, of the mechanism.

Claim 3.2. If any item j ∈ S∗ reports a smaller cost b(j) < c(j), then set S∗

remains the same.

Proof. Let b be the bid vector, where j reports b(j) and other bids remain un-
changed. First we notice that, for any set S with j ∈ S, (v(S)− t · b(S))− (v(S)− t ·
c(S)) = t(c(j)− b(j)) is a fixed positive value. Hence,

v(S∗)− t · b(S∗) = v(S∗)− t · c(S∗) + t
(
c(j)− b(j)

)
≥ v(S)− t · c(S) + t

(
c(j)− b(j)

)
= v(S)− t · b(S).

Further, for any set S with j /∈ S, we have

v(S∗)− t · b(S∗) > v(S∗)− t · c(S∗)
≥ v(S)− t · c(S)
= v(S)− t · b(S).

Therefore, we conclude that S∗ = argmaxS⊆A\T (v(S) − t · b(S)), and by the fixed
tie-breaking rule, S∗ is selected as well.

Our main mechanism for XOS functions is a randomized mixture of the mecha-
nism XOS-random-sampling and one that always picks an item from argmaxi v(i).

Algorithm 2 XOS-mechanism-main.
With probability 1

2 , run XOS-random-sampling.
With probability 1

2 , pick the most-valuable item; pay B to the agent.

Theorem 3.1. The mechanism XOS-mechanism-main is budget feasible and
truthful and provides a constant approximation ratio for XOS valuation functions.

In the remainder of this section, we prove this theorem. We split the proof into
the following three lemmas.

Lemma 3.2. XOS-mechanism-main is universally truthful.

Our mechanism, at a high level point of view, has a flavor similar to that of
the mechanism composition introduced in [1]. In particular, we may consider steps
1–4 of Algorithm 1 as one mechanism of choosing candidate winners, and steps 5–7
as another mechanism restricted to the set of the surviving agents; then the whole
mechanism is a composition of the two. It was shown in [1] that if the first mechanism
is composable (i.e., truthful plus the property that any winner cannot manipulate the
winner set without losing) and the second mechanism is truthful, then the composition
mechanism is truthful. In our mechanism XOS-mechanism-main, composability of
steps 1–4 follows from Claim 3.2, and truthfulness of steps 5–7 is by the corresponding
property of Additive-mechanism. Therefore, XOS-mechanism-main is truthful.

Lemma 3.3. XOS-mechanism-main is budget feasible.

In the mechanism XOS-random-sampling, the payment to each winner is the
maximum amount that the agent can bid and still win. This amount is the minimum
of the threshold bids in each of the intermediate steps. In particular, the payment
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is upper bounded by the threshold of the mechanism Additive-mechanism in step
6. As Additive-mechanism is budget feasible [17], our mechanism XOS-random-
sampling is budget feasible as well. Finally, it is also budget feasible to pay our
entire budget to the agent with the most valuable item.

Lemma 3.4. XOS-mechanism-main has a constant approximation ratio.

Proof. Let opt = opt(A) denote the optimal winning set within the budget B,
and let k = mini∈opt

v(opt)
v(i) . Thus v(opt) ≥ k · v(i) for each i ∈ opt. By Lemma 2.1,

we have v(opt ∩ T ) ≥ k−1
4k v(opt) with a probability of at least 1

2 . Thus, we have
v(opt(T )) ≥ v(opt ∩ T ) ≥ k−1

4k v(opt) with a probability of at least 1
2 . (The first

inequality is because opt∩T is a particular solution and opt(T ) is an optimal solution
for set T with the budget constraint.)

We let opt∗ = optf (S∗) be the optimal solution with respect to the item set S∗,
additive value-function f , and budget B. In the following we show that f(opt∗) is a
good approximation of the actual optimum v(opt). Consider the following two cases:

• c(S∗) > B. Then we can find a subset S′ ⊆ S∗ such that B
2 ≤ c(S′) ≤ B.

This S′ can be obtained from S∗ by taking elements of S and adding them
to S′ (S′ is empty initially, items are added in the order of decreasing costs).
By Claim 3.1, we know that f(S′) ≥ t · c(S′) ≥ v(opt(T ))

8B · B2 ≥
v(opt(T ))

16 . Then
by the fact that opt∗ is an optimal solution and S′ is a particular solution
with budget constraint B, we have f(opt∗) ≥ f(S′) ≥ v(opt(T ))

16 ≥ k−1
64k v(opt)

with a probability of at least 1
2 .

• c(S∗) ≤ B. Then opt∗ = S∗. Let S′ = opt\T ; thus, c(S′) ≤ c(opt) ≤ B.
By Lemma 2.1, we have v(S′) ≥ k−1

4k v(opt) with a probability of at least 1
2 .

Recall that S∗ = argmaxS⊆A\T (v(S) − t · c(S)). Then with a probability of
at least 1

2 , we have

f(opt∗) = f(S∗) = v(S∗)
≥ v(S∗)− t · c(S∗)
≥ v(S′)− t · c(S′)

≥ k − 1
4k

v(opt)− v(opt(T ))
8B

·B

≥ k − 1
4k

v(opt)− v(opt)
8

=
k − 2

8k
v(opt).

In either case, we get

f(opt∗) ≥ min
{
k − 1
64k

v(opt),
k − 2

8k
v(opt)

}
≥ k − 2

64k
v(opt)

with a probability of at least 1
2 . At the end we output the result of Additive-

mechanism(f, S∗, B) in the last step of XOS-random-sampling. We recall that
Additive-mechanism has an approximation factor of at most 3 with respect to the
optimal solution f(opt∗). Thus the solution given by XOS-random-sampling is at
least 1

3 · f(opt∗) ≥ 1
3 ·

1
2 ·

k−2
64k v(opt) = k−2

384kv(opt).
On the other hand, since k = mini∈opt

v(opt)
v(i) , the solution given by picking the

largest item satisfies maxi v(i) ≥ 1
kv(opt). Therefore, our main mechanism XOS-
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mechanism-main receives a set with the value of at least(
1
2
· k − 2

384k
+

1
2
· 1
k

)
v(opt) =

k + 382
768k

v(opt) ≥ 1
768

v(opt).

This completes the proof of the lemma.

Subadditive valuations via XOS approximation. For fractionally subadditve valu-
ations Theorem 3.1 tells us that there is a constant approximation mechanism. We
now ask the same question of whether there exists a constant approximation truth-
ful mechanism for arbitrary subadditive function v(·). A straightforward approach
would be to approximate subadditive valuation v(·) by an XOS function ṽ(·). In
other words, we want to find ṽ(·) such that v(S)

α ≤ ṽ(S) ≤ v(S) for some α ≥ 1
and any S ⊆ A. Then we may run XOS-mechanism-main as if the real valuation
was ṽ(·) and obtain O(α) approximation to the subadditive valuation v(·). It is well
known [27] that any subadditive function admits a O(log n) XOS approximation. In
general, the approximation gap can be as large as Θ(log n) [11, 22]. However, for some
special cases one can improve on the O(log n) bound. From the classic Bondareva–
Shapley theorem [12, 45] the best possible XOS approximation can be described in
terms of the integrality gap of the corresponding fractional cover linear program for
v(·). For some problems the corresponding gaps are bounded by a constant (e.g.,
facility location [41]).

3.1. Sublogarithmic approximation for subadditive valuations. Here, we
give another mechanism for subadditive functions. Unlike the brute-force XOS ap-
proximation, this mechanism runs in polynomial time and has an o(log n) approxi-
mation ratio. It improves upon the previously best known upper bound O(log2 n) of
Dobzinski, Papadimitriou, and Singer [25]. Similar to [25], we employ the classic cost
sharing scheme to compensate the sellers.

As a subroutine in our mechanism we use a constant factor approximation (non-
truthful) algorithm for subadditive maximization under a knapsack constraint. Badani-
diyuru, Dobzinski, and Oren [6] gave a 2 + ε approximation algorithm, which we will
use as a black box in the description of our truthful mechanism.

Algorithm 3 SA-random-sampling.
1. Pick each item i.i.d. with probability 1

2 into group T .
2. Let v be the value of β-approximation algorithm A to

optimization problem: max
X⊂T

v(X) s.t. c(X) ≤ B.

3. for k = 1 to |A \ T | do
Let Xk =

{
i ∈ A \ T | c(i) ≤ B

k

}
.

Let X̂k be the output of A for the problem: max
X⊂Xk

v(X) s.t. |X| ≤ k.

if v(X̂k) ≥ log logn
80 logn · v, then

return X̂k as the winners; pay B
k to everyone in X̂k.

end if
end for

4. return ∅.
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Similarly to XOS-random-sampling, the computed value v with high proba-
bility is within a constant factor of the optimum when the value of a single most
valuable item is negligible compared to the optimal solution. That is, in the latter
case we are able to learn the rough value of the optimal solution by random sampling.
Next we try to find a big value subset X̂k ⊂ A \ T in which every item will accept
a compensation equal to the budget share of B

k . This part of our mechanism can be
seen as an instance of the classic cost sharing scheme. Finally, we use v as a bench-
mark to determine whether X̂k is good enough to be the final winning set. The final
mechanism for subadditive functions is as follows.

Algorithm 4 SA-mechanism-main-2.
With probability 1

2 , run SA-random-sampling.
With probability 1

2 , pick the most-valuable item; pay B to the agent.

Theorem 3.5. SA-mechanism-main-2 runs in polynomial time given a demand
oracle and is a truthful budget feasible mechanism for subadditive functions with an
approximation ratio of O

( logn
log logn

)
.

Proof. Let S = A \ T . We assume that A is a polynomial time algorithm given
access to the demand query oracle. Hence, SA-mechanism-main-2 works in polyno-
mial time as well. Since |X̂k| = k, the payment share of Bk is always affordable within
the budget. Therefore, SA-random-sampling and consequently SA-mechanism-
main-2 are budget feasible. To show universal truthfulness we only need to argue
about SA-random-sampling. As the mechanism is incentive compatible for items
in T , it suffices to consider only items in A \ T . As we further use the standard cost
sharing scheme, the truthfulness follows [38].

Approximation ratio. It remains to estimate the approximation ratio. Let opt =
opt(A) denote the optimal solution for the whole set. If there exists an item i ∈ A
such that v(i) ≥ 1

2v(opt), then picking the largest item will generate a value of at
least 1

2v(opt), and we are done. In the following, we assume that v(i) < 1
2v(opt) for

all i ∈ A. Then by Lemma 2.1,

Pr
[
v(opt(T )) ≥ v(opt)

8
, v(opt(S)) ≥ v(opt)

8

]
≥ 0.5.

Hence, with probability at least 1
4 we have

(1) v(opt(S)) ≥ v(opt(T )) ≥ 1
8
v(opt).

Therefore, it suffices to show that the approximation ratio is O( logn
log logn ) for any fixed

S and T for which (1) holds true. Then, as A is a β approximation to v(opt(T )),
we have v ≥ 1

β v(opt(T )) ≥ 1
8β v(opt). If the algorithm outputs X̂k as winning set,

then its value is at least v ·Ω( log logn
logn ). Thus it remains to prove that the mechanism

always outputs a nonempty set, assuming that (1) holds true. In the following proof
we assume the contrary.

Let opt(S) = S∗ = {1, 2, 3, . . . ,m}, where c1 ≥ c2 ≥ · · · ≥ cm. We divide agents
of S∗ into disjoint groups Z1, . . . , Zr+1 by going over the elements of S∗ in decreasing
order of the costs. We start by forming Z1 with |Z1| =

⌊
B
c1

⌋
first items; to form each

new group Zi (i ≥ 2) we start from the smallest yet unassigned agent j(i) (we let
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j(1) = 1) and pick next |Zi| =
⌊
B
cj(i)

⌋
elements (or maybe a smaller number if we run

out of m elements).
If there exists a set Zi such that v(Zi) ≥ log logn

10 logn ·v, then the mechanism does not
output an empty set. Indeed, the mechanism would buy |Zi| items at the price B

|Zi| ,
because A is a β-approximation algorithm and its output would pass the threshold of
log logn
10β logn · v. Therefore, we may assume that v(Zi) < log logn

10 logn · v for 1 ≤ i ≤ r + 1. On
the other hand, by subadditivity, we have

r+1∑
i=1

v(Zi) ≥ v(S∗) = v(opt(S)) ≥ v(opt(T )) ≥ v.

We conclude that (r + 1) · log logn
10 logn · v > v, which implies

r >
10 log n
log log n

− 1 ≥ 5 log n
log log n

≥ 5 logm
log logm

.

We recall that S∗ is a budget feasible solution. Thus
∑m
j=1 cj ≤ B. Furthermore,

cj(1) >
B

|Z1|+1 , cj(2) >
B

|Z2|+1 , . . . , cj(r) >
B

|Zr|+1 . We have

B ≥
m∑
j=1

cj ≥ c1 + |Z1|cj(2) + · · ·+ |Zr|cj(r+1)

>
B

|Z1|+ 1
+
|Z1|B
|Z2|+ 1

+ · · ·+ |Zr−1|B
|Zr|+ 1

.

Hence,

1 ≥ 1
|Z1|+ 1

+
|Z1|
|Z2|+ 1

+ · · ·+ |Zr−1|
|Zr|+ 1

≥ 1
2|Z1|

+
|Z1|
2|Z2|

+ · · ·+ |Zr−1|
2|Zr|

≥ 1
2
· r r

√
1
|Z1|
|Z1|
|Z2|
· · · |Zr−1|
|Zr|

.

Hence, 2 ≥ r r
√

1
|Zr| or, equivalently, |Zr| ≥ ( r2 )r. Finally, we observe that m ≥

|Zr| ≥ ( r2 )r and r ≥ 5 logm
log logm . Therefore, logm ≥ r · log r

2 ≥
5 logm

log logm · (log logm −
log log logm+ log 5

2 ), and we come to a contradiction. This concludes the proof.

4. Bayesian mechanism design. In this section, we study budget feasible
mechanisms for subadditive valuations from a standard economics viewpoint, where
the costs of all agents (c(i))i∈A are drawn from a prior known distribution D. More
specifically, the mechanism designer and all participants know in advance the D from
which the real cost vector (c(i))i∈A is drawn. However, each c(i) is private information
of agent i. We allow dependencies on the agents’ costs in D.4

Every agent submits a bid b(i) as before and seeks to maximize his own util-
ity. We again consider universally truthful mechanisms; i.e., for every sequence of

4We need some mild technical restriction on D in order to sample certain conditional
random variables. We assume that the density function ρ(·) of D is integrable over each
subset S ⊆ A of its variables for any choice of the rest parameters; i.e., ρ(cA\S) =

∫
Ω ρ(c) dxS

is bounded. This condition is reminiscent of the integrability of marginal density functions
(see, e.g., p. 331 of [47]), though in our case it is slightly stronger. Every finitely supported
or product distribution satisfies the required condition.
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coin flips of the mechanism and each cost vector, truth-telling should be a domi-
nant strategy for every agent. The performance of a mechanism M is measured
by E[M] = Ec∼D[M(c)]. We compare a mechanism with the optimal expected
value E[opt] = Ec∼D[v(opt(c))]; we say that mechanism M is a (Bayesian) α-
approximation if E[opt]

E[M] ≤ α. Before describing the general mechanism, we first con-
sider a simpler problem that helps to understand where Bayesian assumption might
be helpful.

A promise problem. Consider a problem in which all possible cost vectors c are
guaranteed to be budget feasible; i.e., c(A) ≤ B for any cost vector c in the support
of D. In this version of the problem opt = A with the value v(A). In the auction
scenario agents may want to get higher compensation than their true costs, which
may disallow the auctioneer to purchase the entire set A. We use the following simple
mechanism to handle this issue.

Algorithm 5 Random-Thresholds.
Draw a random vector d ∼ D.
Let X = {i ∈ A | s.t. c(i) ≤ d(i)} be the winners.

We note that Random-Thresholds is budget feasible, because, for each fixed
realization of d, the vector of the mechanism’s threshold payments is d, and d(A) ≤
B. We denote by X(c, d) the winners of the Random-Thresholds mechanism for
the cost vector c and the random draw d. We observe that Pr [X(c, d) wins] =
Pr [X(d, c) wins] for any two fixed c and d, because vectors c and d are i.i.d. Therefore,
we may conclude that

Ec∼D,d∼D [v(X(c, d))] =
1
2
Ec∼D,d∼D [v(X(c, d)) + v(X(d, c))] ≥ v(A)

2
,

because X(c, d) ∪X(d, c) = A and, by subadditivity, v(X(c, d)) + v(X(d, c)) ≥ v(A).
Thus Random-Thresholds is a 2 approximation to the opt.

For the remainder of this section let optv(c, S) denote the winning set in an
optimal solution when the valuation function is v(·), the cost vector is c, and the
agent set is S (the parameters are omitted if they are clear from the context); let
v(optv(c, S)) denote the value of optv(c, S). Our mechanism for subadditive functions
in the Bayesian setting is as follows.

Algorithm 6 SA-Bayesian-mechanism.
• With probability 1

2 select the most-valuable item; pay B.
• With probability 1

2 , run the following:
1. Pick each item i.i.d. with probability 1

2 into group T .
2. Compute an optimal solution opt(c, T ) for items in T given budget B.
3. Set a threshold t = v(opt(c,T ))

8B .
4. For items in A \ T find a set S∗ ∈ argmaxS⊆A\T

{
v(S)− t · c(S)

}
.

5. Sample cost vector d ∼ D conditioned on
(a) d(i) = c(i) for each i ∈ T , and
(b) S∗ ∈ argmaxS⊆A\T

{
v(S)− t · d(S)

}
.

6. Let Y = {i ∈ S∗ | s.t. c(i) ≤ d(i)}.
7. If d(Y ) ≤ B, let all i ∈ Y be the winners.
8. Else, in a fixed order select the winners X ⊂ Y s.t. B ≥ d(X) ≥ B

2 .

In the mechanism, steps 1–3 are the same as in XOS-random-sampling, where
we randomly sample a test group T and generate a threshold value t. In steps 4–8,
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we consider a specific subset S∗ ⊆ A \T and select winners only from it. Step 5 helps
guide us on the threshold payments of the winners (see more discussions below).

A few remarks about the mechanism are in order:
• It is tempting to remove the random sampling part as, given D, one may con-

sider a “prior sampling” approach: Generate some virtual instances according
to D and compute a threshold t based on them; then apply this threshold to
all agents in A. Interestingly, the prior sampling approach works well in our
mechanism when, e.g., all c(i)’s are independent, but it does not work for the
case when variables are dependent.
For instance, consider an additive valuation v(·) with v(S) = |S|, budget
B = 2k for a large k, and a set of N = 2k agents with the following discrete
distribution over costs (c = ` means that every c(i) = `):

Pr[c = 1] =
1

2k+1 ,Pr[c = 2] =
1
2k
, . . . ,Pr

[
c = 2k

]
=

1
2
,

Pr
[
c = 2k+1] =

1
2k+1 .

Note that

v(opt(c = 1)) = 2k, v(opt(c = 2)) = 2k−1, . . . , v
(
opt
(
c = 2k

))
= 1,

v
(
opt
(
c = 2k+1)) = 0.

Then the expected optimal value is E[opt] = k+1
2 , and it is equally spread

over all possible costs except the last one, c = 2k+1. Roughly speaking, on
a given instance c, any prior estimate on v(opt(c)) that gives a constant
approximation applies to only a constant number of distinct costs (the con-
tribution of these cases to E[opt] is negligible). Hence for almost all other
possible costs, we get a meaningless estimate for opt(c). Therefore, the prior
sampling will lead to a bad approximation ratio.

• Why do we generate another cost vector d in step 5? Recall that our target
winner set is S∗, whose value v(S∗) in expectation gives a constant approx-
imation of E[opt]. However, we are faced with the problems of selecting a
winning set in S∗ with a sufficiently large value and distributing the budget
among the winners. These two problems together are closely related to coop-
erative game theory and the notion of an approximate core. For subadditive
functions, a constant approximate core may not exist [41] (e.g., set cover
gives a logarithmic lower bound [11]). Thus we might not be able to pick
a winning set with a constant approximation and set threshold payments in
accordance with the valuation function. The question then is: Is there any
other guidance we can take to bound budget feasible threshold payments and
give a constant approximation?
Our solution is to use another random vector d to serve as such a guidance.
Conditions in steps 5a and 5b guarantee that cost vectors c and d are dis-
tributed identically and can be switched in expectation while preserving some
important parameters such as t and S∗. We set d(i) as an upper bound on the
payment of each agent i ∈ S∗, which guarantees that we are always within
the budget constraint.

Theorem 4.1. SA-Bayesian-mechanism is a universally truthful budget feasi-
ble mechanism for subadditive functions and gives in expectation a constant approxi-
mation.
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Proof. Budget feasibility follows simply from the description of the mechanism
and the fact that threshold payments are upper bounded by the random vector d.

For universal truthfulness, we note that in the mechanism, the sampled vector
d comes from a distribution that depends on actual bid vector c. To see why our
mechanism takes a distribution over deterministic truthful mechanisms, we can draw
up front all possible samples d for (i) all possible cost vectors on T and (ii) all possible
choices S ⊆ A\T of S∗. Note that the selection rule of S∗ is monotone, and, similarly
to Claim 3.2, each agent in S∗ cannot manipulate (i) our choice of S∗ and (ii) the choice
of d, as long as he stays in S∗. Therefore, the composition of the first selection rule,
where we choose S∗ (step 4), with the next monotone rule, where we pick winners
in S∗ (steps 7–8), is again a monotone rule. Hence, the mechanism is universally
truthful.

Approximation analysis. We assume that no single item can have cost more than
B in the cost vector c. Thus the first part of SA-Bayesian-mechanism guarantees
that in expectation we obtain one half of the largest item value. We denote by
X(c, d, T ) the set of winners in the second part of SA-Bayesian-mechanism (steps 1–
8), when the cost vector is c, the sampled test set is T , and the random cost vector is
d. Similarly to the promise version of the problem, for every random sample T and
any fixed cost vectors c, d we have

Pr [X(c, d, T ) wins] = Pr [X(d, c, T ) wins] .

Therefore, we may substitute v(X(c, d, T )) with 1
2 (v(X(c, d, T )) + v(X(d, c, T )))

in our calculations of the expected performance of SA-Bayesian-mechanism. To
simplify notation we denote the expression 1

2 (v(X(c, d, T )) + v(X(d, c, T ))) by f(c, d,
T ). Before writing estimates on f(c, d, T ), we need the following preliminary claim.

In the mechanism we compute a threshold t(c, T ) = v(opt(c,T ))
8B and a set S∗(c, T ),

both of which depend on the sampled set T and cost vector c. We also know that the
vector d is such that t(d, T ) = t(c, T ) and S∗(d, T ) = S∗(c, T ).

Claim 4.1. For a given subset S ⊂ S∗(c, T )
1. v(S) ≥ t(c, T ) · c(S),
2. v(S) ≥ t(c, T ) · d(S).

Proof. The argument is similar to that of Claim 3.1 and is identical for c and d
cost vectors. Thus we prove only the first part of Claim 4.1. We suppose for the sake
of contradiction that there exists a subset S ⊆ S∗ such that v(S)− t · c(S) < 0. Let
S′ = S∗ \ S. We have c(S′) + c(S) = c(S∗) and also v(S′) + v(S) ≥ v(S∗), since v is
a subadditive function. Therefore,

v(S′)− t · c(S′) ≥ v(S∗)− v(S)− t · c(S′)
= v(S∗)− t · c(S∗)−

(
v(S)− t · c(S)

)
> v(S∗)− t · c(S∗),

which contradicts the definition of S∗ in step 5b.

Now we are ready to give some estimates on f(c, d, T ), as follows.

Lemma 4.2. Let T be a fixed set and c, d be fixed cost vectors from SA-Bayesian-
mechanism. Then

f(c, d, T ) ≥ min
(

1
32
v(opt(c, T )),

1
2
v(S∗)

)
.
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Proof. We first observe that

Y (c, d, T ) ∪ Y (d, c, T ) = {i ∈ S∗ | s.t. c(i) ≤ d(i)} ∪ {i ∈ S∗ | s.t. d(i) ≤ c(i)} = S∗.

Therefore, if both d(Y (c, d, T )) ≤ B and c(Y (d, c, T )) ≤ B, then according to step 7,
X(c, d, T ) = Y (c, d, T ) and X(d, c, T ) = Y (d, c, T ). We get the desired bound

f(c, d, T ) ≥ 1
2
(
v(Y (c, d, T )) + v(Y (d, c, T ))

)
≥ 1

2
v(S∗).

Now if d(Y (c, d, T )) > B or c(Y (d, c, T )) > B, then according to step 8, either
d(X(c, d, T )) ≥ B

2 or c(X(d, c, T )) ≥ B
2 . In either case by Claim 4.1,

f(c, d, T ) =
1
2

(v(X(c, d, T )) + v(X(d, c, T )))

≥ t

2
· d(X(c, d, T )) +

t

2
· c(X(d, c, T ))

≥ t

2
· B

2
=
v(opt(c, T ))

32
.

We conclude the proof by combining the above two lower bounds on f(c, d, T ).

Proof of Theorem 4.1 (continued). The rest of the proof of Theorem 4.1 proceeds
analogously to the proof of Lemma 3.4 for XOS valuations. From Lemma 2.1 we
conclude that

Pr
T∼2A

[
v(opt(T )) ≥ k − 1

4k
v(opt), v(opt \ T ) ≥ k − 1

4k
v(opt)

]
≥ 1

2
.

We also observe that if v(opt(T )) ≥ k−1
4k v(opt) and v(opt\T ) ≥ k−1

4k v(opt), then

v(S∗) ≥ v(S∗)− t · c(S∗) ≥ v(opt \ T )− t · c(opt \ T )

≥ k − 1
4k

v(opt)− t ·B

≥ k − 1
4k

v(opt)− v(opt(T ))
8B

·B

≥ k − 1
4k

v(opt)− v(opt)
8

=
k − 2

8k
v(opt).

Therefore,

Pr
T∼2A

[
v(opt(T )) ≥ k − 1

4k
v(opt), v(S∗) ≥ k − 2

8k
v(opt)

]
≥ 1

2
.

By Lemma 4.2 we further conclude that

Pr
T∼2A

[
f(c, d, T ) ≥ min

(
1
32
k − 1

4k
v(opt),

k − 2
16k

v(opt)
)]
≥ 1

2
.

Now we can estimate the expected value of the second part of SA-Bayesian-mechanism
as

E
T,c,d

[f(c, d, T )] ≥ 1
2
·min

(
k − 1
128k

,
k − 2
16k

)
v(opt) ≥ k − 2

256k
v(opt).

Combining the estimates for the two parts of SA-Bayesian-mechanism together, we
can lower-bound the performance of SA-Bayesian-mechanism as

1
2
· k − 2

256k
v(opt) +

1
2
· 1
k
v(opt) =

k + 254
512k

v(opt) ≥ 1
512

v(opt).

This concludes the proof of Theorem 4.1.
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5. Subadditive valuations: From Bayesian to prior-free. In this section,
we return to the prior-free setting. Building on the constant approximation mecha-
nism for the Bayesian setting in the previous section, we are finally able to show
the existence of a constant approximation budget feasible mechanism for subadditive
functions.

Our result is based on the following rather general observation: suppose that,
for any given distribution D within the Bayesian framework, we can achieve a certain
approximation guarantee on the performance of a truthful mechanism to the optimum
solution (or any other benchmark). Further, suppose that we do not need to rely on
Bayesian analysis in the following aspects:

Truthfulness. We are looking for universal truthfulness, i.e., require our mechanism
to be incentive compatible for any realization of coin flips of the mechanism.

Distribution. We allow for arbitrary finitely supported distributions with interde-
pendent bids.

With the above conditions, we can return to the prior-free worst-case framework and,
based on the results from the Bayesian framework, show the existence of an incentive
compatible mechanism with the same approximation to the optimum for any bid
vector.

We illustrate below how it works in the context of budget feasible mechanism
design. Recall that the result for the Bayesian framework states that, for any given
distribution D of possibly interdependent sellers’ bids b, there is a universally truthful
budget feasible mechanismMD that derives in expectation over the distribution b ∼ D
at least a constant fraction δ of the expected optimal value opt(b). We may render
this result into a similar result in a worst-case prior-free framework.

Theorem 5.1. For any given subadditive valuation v(·) and budget B there exists
a budget feasible incentive compatible mechanism with constant approximation δ to the
optimum.

Proof. Let A be the space of all universally truthful budget feasible mechanisms.
Note that A forms a convex set, since for any two mechanisms A1, A2 ∈ A one may
define another universally truthful budget feasible mechanism A = λ ·A1 +(1−λ) ·A2,
which with probability λ runs A1 and with probability 1− λ runs A2.

Without loss of generality, we may consider only those situations where every
agent could submit finitely many different numbers as a bid (say, all integer multiples
of B

2n not exceeding B+ 1). Note that there are only finitely many possible allocation
rules over the finite space of feasible bids. Therefore, we may also assume that there
are only finitely many deterministic truthful mechanisms in A.

We now recall our constant (λ0 > 0) approximation results from Theorem 4.1
in the Bayesian framework: for any given distribution D of cost vectors there is a
mechanism A ∈ A such that

Ec∼D
[
v(A(c))

]
≥ δ ·Ec∼D

[
v(opt(c))

]
.

Let us consider a two-player game with the first player deciding on a feasible
cost vector c and the second player choosing a deterministic truthful budget feasible
mechanism A ∈ A. Note that each player has a finite number of pure strategies in
this game. We define each entry of the payoff matrix (i.e., the amount that player 1
pays to player 2) for the pair (c, A) as v(A(c)) − δ · v(opt(c)) in the normal form of
our game. Next we apply Yao’s minimax principle:

min
D

max
A∈A

E
c∼D

[
v(A(c))− δ · v(opt(c))

]
= max

D
min
c

E
A∼D

[
v(A(c))− δ · v(opt(c))

]
.
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From our results for the Bayesian setting the left-hand side is nonnegative. Hence
there is a distribution D of deterministic truthful budget feasible mechanisms in the
right-hand side such that, for any cost vector c,

EA∼D

[
v(A(c))

]
≥ δ · v(opt(c)).

This concludes the proof, as we can take a randomized universally truthful budget
feasible mechanism that simply runsA ∼ D and achieves a δ factor of approximation.

6. Conclusions. Our work on budget feasible mechanism design bridges prior-
free and Bayesian analysis frameworks. First, using the random sampling technique,
we give a prior-free constant approximation mechanism for XOS valuations, which
also implies a prior-free log n mechanism for subadditive functions. Next we turn to
the Bayesian framework. We present a Bayesian constant approximation mechanism
for subadditive valuation functions. Finally, we convert the Bayesian mechanism
to a prior-free mechanism while preserving the same approximation ratio, which is
eventually a constant approximation mechanism for subadditive functions in the prior-
free framework. All our mechanisms are universally truthful.

Our mechanisms continue to work for the extension when the valuation functions
are nonmonotone; i.e., v(S) is not necessarily less than v(T ) for any S ⊂ T ⊆ A.
For instance, the cut function studied in [23] is nonmonotone. For such functions,
we can define v̂(S) = max

T⊆S
v(T ) for any S ⊆ A. It is easy to see that v̂(·) can be

computed easily given a demand oracle, is monotone, and inherits the classification of
v(·). Further, any solution maximizing v(·) is also an optimal solution of v̂(·). Hence,
we can apply our mechanisms to v̂(·) directly and obtain the same approximations.

Random sampling appears to be a powerful approach and has been used suc-
cessfully in other domains of mechanism design, e.g., digital goods auctions [30],
the secretary problem [4, 5], social welfare maximization [22], and mechanism design
without money [16]. It is intriguing to find applications of random sampling in other
mechanism design problems.

For XOS valuations our mechanism can be implemented in polynomial time given
access to demand and XOS query oracles. We also give a complementary computa-
tionally efficient o(log n)-approximation mechanism for subadditive functions using
a cost-sharing payment scheme. However, our constant approximation mechanism
for subadditive valuations is not computationally efficient. Thus it is natural to ask
whether there are truthful designs with the same approximations that can be im-
plemented in polynomial time. Further, all of our mechanisms are randomized; it
is intriguing to consider the approximability of deterministic mechanisms. We leave
these questions for future work.
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