Design and Array implementation a Cantilever-based Non-volatile Memory Utilizing Vibrational Reset

Anh Tuan Do¹, Jayaraman Karthik Gopal¹, Pushpapraj Singh², Chua Geng Li², Kiat Seng Yeo¹ and Tony Tae-Hyoung Kim¹

¹VIRTUS, IC Design Centre of Excellence, Nanyang Technological University, Singapore
²Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore
atdo@ntu.edu.sg

Abstract—This paper proposes a cantilever-based memory structure for storing binary data at extreme operating temperature (up to 300 °C) in rugged electronics. The memory bit (0/1) is formed by opening/closing of an electrostatic switch. Permanent retention is obtained by adhesive force between two smooth surfaces in contact, eliminating leakage observed in all types of storage-layer-based NVMs. The Reset utilizes a train of short pulses to break the adhesion between the electrodes. This allows the Nanoelectromechanical switch (NEMS) memory to be implemented using a simple bi-layer design and easily integrated with CMOS platforms. We propose an array structure where each memory cell consists of a NEMS memory device and one NMOS transistor for full random-access operation.

Keywords—NEM, NVM, cantilever-based, vibrational reset.

I. INTRODUCTION

Over the last few decades, power, performance, and capacity of embedded memories have constantly benefited from the scaling of CMOS technology. However, lower threshold voltage and smaller device channel length in scaled CMOS devices have led to an exponential increment in the leakage current (Ioff) [1]. As a result, designing mainstream memories such as SRAM, DRAM or Flash in nano-scale technology is facing critical issues such as tight requirements on leakage and degraded immunity to process variations.

Recent publications have reported several emerging technologies for achieving zero standby leakage in memory design. These include resistive RAM (R-RAM) [2], magnetic RAM (M-RAM) [3], phase-change RAM (PC-RAM) [4], conductive-bridge RAM (CB-RAM) [5], and ferroelectric-RAM (Fe-RAM) [6]. In these devices, different physical mechanisms (FLASH: floating gate, M-RAM: free magnetic layer, and Fe-RAM: ferroelectric polarization) are exploited to store data without power supply. However, they also fail to offer a good data retention at extreme temperature such as 200 °C and above like mainstream technologies [7].

NEMS-based memory devices utilize electrostatic force to perform set/reset operation and adhesion force between two smooth metal surfaces to retain data. It has been shown that metal-metal adhesion improves at higher temperature [8]. This is because metal soften as temperature increases. As a result, NEMS-based memory devices can potentially offer seamless operation over a wide temperature range for industrial or defense electronic applications. However, conventional NEMS-based NVM needs two separate actuation electrodes to perform the reset and write “1” operations.

This work reports a NEMS NVM device that can retain data even at 300 °C. It can be integrated with a MOSFET transistor to form a complete memory bit cell for fully random-access operation.

II. CANTILEVER-BASED NEMS NVM CELL WITH VIBRATIONAL RESET PROCEDURE

A. Device Structure and Operating Principles

The proposed NEMS-based NVM structure is a three-terminal device that can be fabricated on top of silicon substrate as shown in Fig. 1. The three terminals are named Contact, Actuator and Cantilever, respectively. A potential difference between Cantilever and Actuator forms electrostatic force, which actuates the Cantilever terminal to obtain two distinctive states (i.e. data zero and one). For the sake of clarity, data one is represented by the case where the Cantilever head is attached to Contact. Similarly, data zero is represented by the case where Cantilever is detached from Contact. The act of memory switching from zero to one is called “Set” and that from one to zero is called “Reset”. Both Set and Reset operations are performed by controlling Cantilever and Actuator properly. This simplifies the NEMS device structure, allowing better scalability and fabrication cost effectiveness.

In the Set operation, a large swing pulse (V_set) is applied to Actuator while Cantilever is kept at ground. This induces an attractive electrostatic force between Actuator and Cantilever, which is proportional to the voltage difference across the overlapped surfaces. The attractive electrostatic force pulls down the Cantilever beam. If the electrostatic force is strong enough, the head of the beam will touch the Contact surface. The required voltage to create such force is defined as the pull-in voltage (V_pul). In conventional cantilever switches, the beam will return to its original position due to the spring-like elastic restoring force (F_r) when the voltage on Actuator is removed. However, if the two surfaces are close enough (i.e. ~ 5 nm or
less), the Van der Waals adhesion force \(F_{ad} \) will come into effect [7]. Magnitude of \(F_r \) and \(F_{ad} \) are calculated as [7, 9]:

\[
F_r = \frac{EWT}{4L} \\
F_{ad} = \frac{A_{metal}}{2D_{metal}}
\]

where \(E, W, t \) and \(L \) are the Young’s modulus, width, thickness and length of the cantilever, respectively and \(g \) is the original gap between the Cantilever and the Contact surface (Fig. 1). \(A_{metal} \) is the Hamaker constant of the metal and \(D_{metal} \) the roughness of the surface. The adhesion force \((F_{ad}) \) can be larger than the restoring force \((F_r) \) by carefully engineering the smoothness and the size of the Contact and Cantilever surfaces. This makes the beam remain at the close position (i.e. data one) permanently, which is used as memory operation.

In the Reset operation, the Cantilever beam must be detached from the Contact terminal to go back to the open position (i.e. data zero). In the conventional structures [9], a forth terminal is required on top of the cantilever to pull up the Cantilever beam since the electrostatic force between two differential plates is always attractive. This complicates the fabrication process, affects scalability, and raises costs significantly. To address the above issues, we propose a vibrational reset scheme using Actuator for resetting the memory data. This is done by applying a train of short pulses to Actuator. Each time a short pulse is sent to the Actuator, it pulls down the Cantilever beam. Since the beam is already in contact with the Contact pad, the middle part of the beam will bend down. Furthermore, the magnitude and duration of each pulse are much smaller than that of the Set pulse. As a result, the beam vibrates. If the frequency of the pulses is close to the resonant frequency of the beam, the amplitude of the vibration will grow gradually until it is strong enough to break the adhesion force between Contact and Cantilever. Finally, the beam will move back to its open position.

B. Proposed NEMS Memory Device Fabrication

The whole fabrication process only requires five lithographic steps under moderate process temperature to preserve any underlying CMOS stacks. In addition, three materials are used for the integration of the memory: metal, insulator and a sacrificial material. Molybdenum metal is used to provide ideal contact properties: hardness, low wear-out over cycles, no native oxidation, and excellent thermal stability [10]. The device was fabricated on 8 inch silicon to provide ideal contact properties: hardness, low wear-out materials are used for the integration of the memory: metal, preserve any underlying CMOS stacks. In addition, three lithographic steps under moderate process temperature to ensure the above issues are avoided.

C. Proposed NEMS Device Measurement

A. Set Operation

The Set operation is executed by applying a potential difference between Actuator and Cantilever while Contact is left floating. Fig. 3 shows the measured waveforms in a Set operation where an actuation pulse is applied to Actuator. The Set delay is defined by the time from the rising edge of the pulse to the rising edge of Contact. In this measurement, Cantilever is biased at 0.5 V to easily observe the voltage change at Contact. In actual operation, Cantilever can be grounded. As Fig. 3 shows, the Contact node starts to follow the Cantilever voltage after a short delay (~1.5 µs). The minimum required pull-in voltage \((P_{in}) \) of different devices ranges from 4 V to 6 V. Larger devices have higher minimum pull-in voltages. In this prototyping, the implemented devices are relatively large (~15 µm). The device dimension can be significantly scaled if contemporary NEMS technology is employed. This indicates that the proposed NEMS memory device has the potential to operate at the supply voltage of CMOS integrated circuits. Fig. 4 illustrates how the Set delay improves when we increase the pull-in voltage. As expected, higher pull-in voltages lead to smaller delays in all the Cantilever lengths.

We also attempted to examine the impact of the Cantilever biasing voltage on the Set delay (Fig. 5). As the Cantilever voltage is lowered to a negative level, the Cantilever-Actuator potential difference increases and thus the Set delay decrements. Another factor contributing to the Set delay improvement is the electrostatic force between the head of Cantilever and the Contact plate. However, this causes huge DC current between Cantilever and Contact when they are in contact. Therefore, Contact is left floating during the Set operation.

Impact of operating temperature on the NEMS device is shown in Fig. 6. It can be seen that at higher temperature, the delay is longer. However, the additional delay is insignificant and proves that the NEM device still functions at 300 °C.
Figure 4. Measured Set delay versus pull-in voltage using different cantilever length. Delay reduces with smaller device size.

Figure 5. Measured Set delay versus pull-in voltage.

Figure 6. Measured Set delay versus pull-in voltage at different operating temperature. Delay increases with temperature but insignificantly.

B. Reset Operation

For Reset operation, various pulse frequencies and voltage levels are tested to find the most effective signal. Measurement showed that the most suitable Reset is 4 V peak-to-peak at 1 MHz for all device lengths. To find the required number of pulses for resetting, the following procedures are used: (1) Conduct a Set operation, (2) apply a train of pulses with the period of 1 µs to Contact, (3) measure Cantilever-Contact impedance for checking detachment, and (4) repeat (2) and (3) with a larger number of pulses until Cantilever is detached. Fig. 7 illustrates the measured Reset operation. To confirm the deactivation of the Cantilever, current through the Contact-Cantilever (I_{CC}) path is monitored. Originally, the NEMS memory device is in the Set state. Thus I_{CC} of 2 nA is observed. I_{CC} was controlled by the measurement set-up to avoid excessive current through the dimples. After applying the reset pulses for 10 µs, I_{CC} drops to 10 pA, confirming that Cantilever has been detached from Contact. The leakage of 10 pA is due to the test equipment.

IV. ARRAY IMPLEMENTATION USING 1T-1NEMS BIT CELL

A. Proposed 1T-1NEMS Bit Cell and Array Structure

The proposed NVM device is combined with an NMOS transistor to form a complete bit-cell. The new bit-cell can be integrated using standard CMOS technology to realize a random-access memory. Fig. 8 illustrates a 128×128 memory array using 0.18 µm CMOS technology and the Verilog-A model of the NEMS device. The whole array is powered by 4 V and 9 V supplies (VDD_4 and VDD_9). These values are decided by the required voltage for the Set and Reset operations. Each column shares one bitline (BL) and one data-line (DL) running vertically. Each row has one word-line (WL) and one actuation-line (AL). The access transistor (N_A) bridges the Contact terminal of the NEMS device and BL. WLs are connected to the gates of N_A while ALs are connected to the Actuator nodes of NEMS devices in each row. As expected, the power supply for the array can be completely turned off and the stored data are still retained in the proposed NEMS devices thanks to the non-volatile property. When the memory enters the active mode, all BLs are pre-charged to VDD_4 while all WLs, DLs and ALs are pre-discharged to ground. The detailed read and write cycles of the array are described in the following section.

B. Read Operation

Fig. 9(a) illustrates simulated read operation of the proposed design at 300°C. It can be seen that CMOS readout circuit works well at this temperature. When a read cycle starts (RE = 1), a particular row is chosen by an address decoder and a corresponding WL is enabled, turning on the access transistors (N_A). At the same time, READ is triggered high to
Write delay is the sum of Set and Reset delays. As presented in section III, Set delay is about 1.5 µs while the Reset delay is about 10 µs. Thus, a total delay of only 11.5 µs is required, which is much shorter than NAND Flash (~200 µs) and comparable to that of NOR Flash (~10 µs). Note that faster write speed can be achieved with device scaling.

The Actuator electrode utilizes two signal levels, 4 V and 9 V, through the AL lines. Therefore, the AL lines must be driven by a level shifter that can switch between 9 V and 4 V (Fig. 8, bottom). During Set, P2 is off and P3 is on to raise the supply level to 9 V.

The Reset pulses can be applied to the horizontal or vertical lines. However, applying them to the vertical lines leads to a huge power consumption since each cell requires one separate pulse signal. In the proposed array architecture, Actuators are connected horizontally and thus only one AL is activated during write operation. As a result, it significantly reduces the Reset energy consumption.

V. CONCLUSION

A 3-terminal cantilever-based NEMS device is proposed as a NVM structure with fast read/write and good data retention at extremely high temperature (up to 300 °C). The proposed vibrational reset operation significantly simplify the device structure complexity and hence fabrication cost. A selective set-after-reset scheme is introduced for energy efficient write operation in the proposed array architecture. When integrated with CMOS technology, our 1T-1NEMS bit cell features random-access with 3 ns read delay and 11.5 µs write delay. This write delay can be improved with more aggressive device scaling. The experimental results validate that the proposed NEMS NVM is a promising candidate for various systems requiring very high operating temperature.

REFERENCES