Supervisory Control: Advanced Theory and Applications

Dr Rong Su
S1-B1b-59, School of EEE
Nanyang Technological University
Tel: +65 6790-6042, Email: rsu@ntu.edu.sg
Introduction to Supervisory Control Theory
Outline

- Introduction to Supervisory Control
- Ramadge-Wonham Supervisory Control Theory
- Example – A Pusher-Lift System
- Primary Goals of EE6226
The Concept of Discrete Event Systems (DES)

- A DES is a structure with ‘states’ having duration in time, ‘events’ happening *instantaneously* and *asynchronously*.
 - States: e.g. machine is idle, is operating, is broken down, is under repair
 - Events: e.g. machine starts work, breaks down, completes work or repair

- State space *discrete* in time and space.

- State *transitions* ‘labeled’ by events.
The Motivation of Developing Supervisory Control Theory (SCT) for DES (till 1980)

- Control problems *implicit* in the literature (enforcement of resource constraints, synchronization, ...)

But

- Emphasis on modeling, simulation, verification
- Little formalization of control *synthesis*
- Absence of control-theoretic ideas
- No standard model or approach to control
Related Areas

- Programming languages for modeling & simulation
- Queues, Markov chains
- Petri nets
- Boolean models
- Formal languages
- Process algebras (CSP, CCS)
“Great” Expectations for SCT

• System model
 – Discrete in time and (usually) space
 – Asynchronous (event-driven)
 – Nondeterministic
 • support transitional choices

• Amenable to formal control synthesis
 – exploit control concepts

• Applicable: manufacturing, traffic, logistic,...
Relationship with Systems Control Concepts

• **State space** framework well-established:
 – Controllability
 – Observability
 – Optimality (Quadratic, H_∞)

• **Use of geometric constructs and partial order**
 – Controllability subspaces
 • Supremal subspaces!
Ramadge-Wonham SCT (1982)

- **Automaton** representation
 - state descriptions for concrete modeling and computation

- **Language** representation
 - i/o descriptions for implementation-independent concept formulation

- **Simple control** “technology”
Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of EE6226
RW paradigm is based on *languages*, but implemented on *finite-state automata*.
Basic Concepts of Languages

• Given an alphabet Σ (e.g. $\Sigma = \{ a, b, c, d \}$)

 – A string is a finite sequence of events from Σ, e.g. $s = \text{ababa}$

 – $\Sigma^+ := \{ \text{all strings generated from } \Sigma \}$, $\Sigma^* := \Sigma^+ \cup \{ \varepsilon \}$

 • ε is called the empty string: $s\varepsilon = \varepsilon s = s$

 – Given $s_1, s_2 \in \Sigma^*$, s_1 is a prefix substring of s_2, if ($\exists t \in \Sigma^*$) $s_1t = s_2$

 • We use $s_1 \leq s_2$ to denote that s_1 is a prefix substring of s_2

 – A language $W \subseteq \Sigma^*$: most time we require W to be regular

 – The prefix closure of a language W is: $\overline{W} := \{ s \in \Sigma^* \mid (\exists s' \in W) s \leq s' \}$

 • W is prefix closed if $W = \overline{W}$
Finite-State Automaton (FSA)

- A finite-state automaton is a 5-tuple $G = (X, \Sigma, \xi, x_0, X_m)$, where
 - X : the state set
 - Σ : the alphabet
 - x_0 : the initial state
 - X_m : the marker state set (or the final state set)
 - $\xi : X \times \Sigma \rightarrow X$: the transition map
 - ξ is called a partial map, if it is not defined at some pair $(x, \sigma) \in X \times \Sigma$.
 - Otherwise, it is called a total map.
 - Extension of the transition map: $\xi : X \times \Sigma^* \rightarrow X : (x, s\sigma) \mapsto \xi(x, s\sigma) := \xi(\xi(x, s), \sigma)$
The Famous “Small Machine” Model

- $G = (X, \Sigma, \xi, x_0, X_m)$
 - $X = \{0, 1, 2\}$
 - $\Sigma = \{a, b, c, d\}$
 - $x_0 = 0$
 - $X_m = \{0\}$

$\begin{array}{c|cccc}
\text{State} & a & b & c & d \\
\hline
0 & \text{Idle} & & & \\
1 & \text{Work} & & & \\
2 & \text{Failure} & & & \\
\end{array}$

- a : starts work
- b : finishes work
- c : machine fails
- d : machine is repaired
Connection between Language and FSA

• Give a FSA $G = (X, \Sigma, \xi, x_0, X_m)$,

 – closed behavior of G:
 \[L(G) := \{s \in \Sigma^* | \xi(x_0, s) \text{ is defined} \} \]

 – marked behavior of G, i.e. the language recognized by G,
 \[L_m(G) := \{s \in L(G) | \xi(x_0, s) \in X_m \} \]

• G is nonblocking, if $L_m(G) = L(G)$.

• A language is regular, if it is recognizable by a FSA.
 – We can use Arden’s rule to derive a language from a FSA.
Natural Projection over Languages

- Given Σ and $\Sigma' \subseteq \Sigma$, $P: \Sigma^* \rightarrow \Sigma'^*$ is a natural projection if
 - $P(\varepsilon) = \varepsilon$
 - $(\forall \sigma \in \Sigma) \ P(\sigma) = \begin{cases} \sigma & \text{if } \sigma \in \Sigma' \\ \varepsilon & \text{if } \sigma \notin \Sigma' \end{cases}$
 - $(\forall s \sigma \in \Sigma^*) \ P(s \sigma) = P(s)P(\sigma)$
- The inverse image map of P is $P^{-1} : pwr(\Sigma'^*) \rightarrow pwr(\Sigma^*)$ with
 $$(\forall A \subseteq \Sigma'^*) \ P^{-1}(A) := \{s \in \Sigma^* | P(s) \in A\}$$

$a \ b \ c \ a \ c \ c \ d \ d$

$\Sigma = \{a, b, c, d\}$ $\Sigma' = \{a, d\}$

P

$a \ a \ a \ d$
Synchronous Product over Languages

- Builds a more complex automaton

\[A_1 \quad || \quad A_2 \]

- with more complex language

\[
L_m(A_1) \parallel L_m(A_2) = P_{1}^{-1}(L_m(A_1)) \cap P_{2}^{-1}(L_m(A_2))
\]

expressed by natural projections

\[
P_i: (\Sigma_1 \cup \Sigma_2)^* \rightarrow \Sigma_i^* \quad (i = 1,2)
\]
The synchronous product is *commutative* and *associative*!
Implement Synchronous Product by Automaton Operation

- Let $G_1 = (X_1, \Sigma_1, \xi_1, x_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \xi_2, x_{0,2}, X_{m,2})$,
- Let

 $$G_1 \times G_2 = (X_1 \times X_2, \Sigma_1 \cup \Sigma_2, \xi_1 \times \xi_2, (x_{0,1}, x_{0,2}), X_{m,1} \times X_{m,2})$$

 where

 $$\xi_1 \times \xi_2 ((x_1, x_2), \sigma) := \begin{cases}
 (\xi_1(x_1, \sigma), x_2) & \text{if } \sigma \in \Sigma_1 - \Sigma_2 \\
 (x_1, \xi_2(x_2, \sigma)) & \text{if } \sigma \in \Sigma_2 - \Sigma_1 \\
 (\xi_1(x_1, \sigma), \xi_2(x_2, \sigma)) & \text{if } \sigma \in \Sigma_1 \cap \Sigma_2
 \end{cases}$$

- Result:
 - $L(G_1) || L(G_2) = L(G_1 \times G_2)$
 - $L_m(G_1) || L_m(G_2) = L_m(G_1 \times G_2)$
For Example

Automaton product implements synchronous product!
Properties of Projection and Synchronous Product

- **[Chain Rule]** Given Σ_1, Σ_2 and Σ_3, suppose $\Sigma_3 \subseteq \Sigma_2 \subseteq \Sigma_1$.

 - Let $P_{12} : \Sigma_1^* \rightarrow \Sigma_2^*$, $P_{23} : \Sigma_2^* \rightarrow \Sigma_3^*$ and $P_{13} : \Sigma_1^* \rightarrow \Sigma_3^*$ be natural projections.

 - Then $P_{13} = P_{23}P_{12}$

- **[Distribution Rule]** Given $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, let $\Sigma' \subseteq \Sigma_1 \cup \Sigma_2$.

 - Let $P : (\Sigma_1 \cup \Sigma_2)^* \rightarrow \Sigma'^*$ be the natural projection. Then

 - $P(L_1 || L_2) \subseteq P(L_1) || P(L_2)$

 - $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma' \Rightarrow P(L_1 || L_2) = P(L_1) || P(L_2)$
We now talk about control …
The Control Architecture

Given a plant G and a requirement SPEC, compute a supervisor S
- $L_m(S/G) := L_m(S) \cup L_m(G) \subseteq L_m(G) \cup L_m(\text{SPEC})$
- S should not disable the occurrence of any uncontrollable event
- S should make a move only based on observable outputs of G
- S/G is nonblocking

$\Sigma = \Sigma_c \cup \Sigma_{uc}$
$\Sigma = \Sigma_o \cup \Sigma_{uo}$
$\Sigma_c := \text{controllable alphabet}$
$\Sigma_o := \text{observable alphabet}$

enable/disable events in Σ_c
General Control Issues

Q1: Is there a control that enforces both safety, and liveness (nonblocking), and which is maximally permissive?

Q2: If so, can its design be automated?

Q3: If so, with acceptable computing effort?
Solution to Question 1

- **Fundamental definition**

A sublanguage $K \subseteq L_m(G)$ is *controllable* (w.r.t. G) if

$$
\overline{K \Sigma_{uc} \cap L(G)} \subseteq K
$$

- “Once in K, you can’t skid out on an uncontrollable event.”

\[
\begin{align*}
\Sigma &= \{a,b,c,d\} \\
\Sigma_c &= \{a,c,d\} \\
\Sigma_{uc} &= \{b\}
\end{align*}
\]
Supremal Controllable Sublanguage

- Given a plant G and a specification SPEC (both over Σ), let

 \[
 \mathcal{C}(G,\text{SPEC}) := \{ K \subseteq L_m(G) \cap L_m(\text{SPEC}) \mid K \text{ is controllable w.r.t. } G \}
 \]

- $\mathcal{C}(G,\text{SPEC})$ is a poset under set inclusion and closed under arbitrary union
 - The largest element is called the *supremal* controllable sublanguage,
Fundamental Result

• There exists a (unique) *supremal* controllable sublanguage
 \[K_{\text{sup}} \subseteq L_m(G) \cap L_m(\text{SPEC}) \]
 – SPEC is an automaton model of a specification

• Furthermore \(K_{\text{sup}} \) can be effectively computed.
Lattice View of Solution to Question 1

$L_m(G)$ \quad $L_m(SPEC)$

$L_m(G) \cap L_m(SPEC)$

Σ^* (all strings)

synthesis

K_{sup} (optimal)

K'

K'' (suboptimal)

\emptyset (no strings)
Solution to Question 2

- Given G and SPEC, compute K_{sup}

 $$K_{\text{sup}} = L_m(\text{SUPER})$$
 $$\text{SUPER} = \text{Supcon} (G, \text{SPEC})$$

- Given SUPER, implement K_{sup}

 ![Diagram](enable/disable events in Σ_c)
SUPER and SIMSUP is control equivalent if

- \(L(G) \cap L(SUPER) = L(G) \cap L(SIMSUP) \)
- \(L_m(G) \cap L_m(SUPER) = L_m(G) \cap L_m(SIMSUP) \)
Supervisor Reduction

- Controlled behavior has *state size*
 \[\|L_m(SUPER)\| \leq \|L_m(G)\| \times \|L_m(SPEC)\| \]

- Compute *reduced, control-equivalent* SIMSUP, often with
 \[\|L_m(SIMSUP)\| \ll \|L_m(SUPER)\| \]

- In TCT:
 - CONSUPER = Condat(G,SUPER)
 - SIMSUP = Supreduce(G,SUPER,CONSUPER)
A solution to Question 3 is modular/distributed/hierarchical control
Outline

- Introduction to Supervisory Control
- Ramadge-Wonham Supervisory Control Theory
- Example – A Pusher-Lift System
- Primary Goals of EE6226
A Pusher-Lift System

retract (push=0) ← extend (push = 1)

ascend

descend

Lift

up,down ∈ \{0,1\} × \{0,1\}

place=1,0

Pusher
Lift Model G_{lift}

- : controllable
- : uncontrollable

EE6226, Discrete Event Systems
Pusher Model G_{pu}

![Diagram of Pusher Model G_{pu}]
Product Model G_{pro}
Specifications

- **Placed**: down=0, up=1
- **Retracted**: down=1, up=0
- **Pushed**: push=1
- **Descended**: place=1

Nodes: E₁, E₂, E₃, E₄
Monolithic Method – Supervisor Synthesis

- **Plant:** $G = G_{\text{lift,lo}} \times G_{\text{pu}} \times G_{\text{pro}}$ (use Sync in TCT (240, 956))

- **Specification:**
 - $E = E_1 \times E_2 \times E_3 \times E_4$
 - $E = \text{Selfloop}(E_1 \times E_2 \times E_3 \times E_4, \Sigma - (\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Sigma_4))$ (64, 288)

- **SUPER = Supcon(G, E)** (636, 1369)

- **SUPER = Condat(G, SUPER) : controllable**

- **SIMSUPER = Supreduce(G, SUPER, SUPER)** (99, 476; slb=51)
Some Remarks

- **Advantages of RW SCT**
 - It is conceptually simple
 - Many real systems can be modeled in this framework

- **Disadvantages of RW SCT**
 - The computational complexity is very high for large systems
 - The implementation issues are not explicitly addressed
 - A procedure of signals \rightarrow events (supervisory control) \rightarrow signals is needed.
 - *Performance issues* are not well addressed
 - “Bad” behaviors are forbidden, but no specific “good” behavior is enforced.
Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of EE6226
Goals of EE6226

- To introduce several techniques that are aimed to handle the complexity issue involved in supervisor synthesis.
 - Modular control
 - Distributed control
 - Hierarchical control
 - State-feedback control

- To deal with supervisory control under partial observations.

- To address a certain type of performance.
Basic Functions of Supervisor Synthesis Package

Developed by R. Su
Nanyang Technological University
Create Automata

Automaton: B1.cfg

[automaton]
states = 0, 1, 2, 3, 4
alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
controllable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
observable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),
 (1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),
 (1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)
marker-states = 1
initial-state = 0
Check Size of Automaton

make_get_size.py

[user@host ~] $ make_get_size
Please input model (.cfg): B1.cfg
Number of states: 5
Number of transitions: 9
Automaton Product

make_product.py

[user@host ~]$ make_product
Please input list of your input automata (comma-separated list of automata): B1.cfg, B2.cfg
Please input product automaton (.cfg): B1-B2.cfg
Mon Mar 16 10:33:51 2009: Must do 1 product computations. (memory=9052160 bytes)
Mon Mar 16 10:33:51 2009: Computed product (memory=9052160 bytes)
 Number of states: 17
 Number of transitions: 65
Automaton Abstraction

make_abstraction.py

[user@host ~]$ make_abstraction
Please input source automaton (.cfg): B1-B2.cfg
Please input list of preserved events (comma-separated list of event names): tau, R1-drop-B1
Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg
Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes)
 Number of states: 5
 Number of transitions: 14
Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg
 (memory=8409088 bytes)
Sequential Automaton Abstraction

make_sequential_abstraction.py

[user@host ~]$ make_sequential_abstraction
Please input list of your input automata (comma-separated list of automata): B1.cfg, B2.cfg
Please input list of preserved events (comma-separated list of event names): tau, R1-drop-B1
Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg
Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)
Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9 (memory=8265728 bytes)
Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51 (memory=8278016 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14 (memory=8294400 bytes)
Natural Projection

make_natural_projection.py

[user@host ~]$ make_natural_projection
Please input source automaton (.cfg): B1-B2.cfg
Please input list of preserved events (comma-separated list of event names): tau, R1-drop-B1
Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg
Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)
 Number of states: 3
 Number of transitions: 3
Check Language Equivalence

Make_language_equivalence_test.py

[user@host ~]$ make_language_equivalence_test
Please input first model (.cfg): B1-B2-abstraction.cfg
Please input second model (.cfg): B1-B2-natural-projection.cfg
Language equivalence HOLDS
Supervisor Synthesis

make_supervisor.py

[user@host ~]$ make_supervisor
Please input plant model (.cfg): plant.cfg
Please input specification model (.cfg): spec.cfg
Please input supervisor (.cfg): supervisor.cfg
Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes)
 Number of states: 140
 Number of transitions: 288
Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg (memory=14536704 bytes)
Nonconflict Check

make_nonconflicting_check.py

[user@host ~]$ make_nonconflicting_check
Please input list of your input automata (comma-separated list of automata): plant.cfg, supervisor.cfg
Mon Mar 16 12:56:21 2009: Started (memory=14954496 bytes)
Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926 (memory=14954496 bytes)
Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919 (memory=15073280 bytes)
Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380 (memory=15073280 bytes)
Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6 (memory=15036416 bytes)
ok
Check Controllability

make_controllability_check.py

[user@host ~]$ make_controllability_check
Please input plant model (.cfg): plant.cfg
Please input supervisor model (.cfg): supervisor.cfg
States with disabled controllable events:
 (1, 1): {R2-pick-B2, R3-pick-B2}
 (4, 2): {R2-drop-B2}
 (5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3}
 (10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33}

 (799, 121): {R2-pick-B2, R3-pick-B2}

Supervisor is correct (no disabled uncontrollable events)
Compute Feasible Supervisor

make_feasible_supervisor.py

[user@host ~]$ make_feasible_supervisor
Please input plant model (.cfg): plant.cfg
Please input supervisor model (.cfg): supervisor.cfg
Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg
Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes)
 Number of states: 82
 Number of transitions: 196
Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg
 (memory=10547200 bytes)
Batch Operation

Batch_Operation.py

#!/usr/bin/env python
from automata import frontend

#Compute product

#Compute automaton abstraction

#Compute supervisor
frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')

#Check controllability
frontend.make_controllability_check('plant.cfg', 'supervisor.cfg')