INDEPENDENCE OF A CLASS OF MULTIPLE STOCHASTIC INTEGRALS

Nicolas Privault

Abstract

We show that two multiple stochastic integrals $I_n(f_n)$, $I_n(g_m)$ with respect to the solution $(M_t)_{t \in \mathbb{R}_+}$ of a deterministic structure equation are independent if and only if two contractions of f_n and g_m, denoted as $f_n \circ_1 g_m$, $f_n \circ_1 g_m$, vanish almost everywhere.

1 Introduction

This paper aims to extend the necessary and sufficient conditions for the independence of single or multiple stochastic integrals of [12], [14], [15], [16], [17], cf. also [6], [7], proving and extending results that have been partially announced in [9]. Let $(M_t)_{t \in \mathbb{R}_+}$ be a martingale satisfying the structure equation

$$d[M,M]_t = dt + \phi_t dM_t,$$

where $\phi : \mathbb{R}_+ \to \mathbb{R}$ is a measurable deterministic function. Such martingales are normal in the sense of [2], i.e. $d < M, M >_t = dt, t \in \mathbb{R}_+$ and they satisfy the chaos representation property, cf. [3]. Moreover, they have independent increments, and if $(B_t)_{t \in \mathbb{R}_+}$, $(N_t)_{t \in \mathbb{R}_+}$ are independent standard Brownian motion and Poisson process of intensity ds/ϕ_2, then $(M_t)_{t \in \mathbb{R}_+}$ can be represented as

$$M_t = \int_0^t 1_{\{\phi_s = 0\}} dB_s + \int_0^t \phi_s \left(dN_s - \frac{ds}{\phi_2^2} \right), \quad t \in \mathbb{R}_+.$$

We choose to construct the processes $(B_t)_{t \in \mathbb{R}_+}$ on the classical Wiener space $(\Omega_1, \mathcal{F}_1, P_1)$, where Ω_1 is the space of cadlag functions starting at zero. We denote by $(\Omega_2, \mathcal{F}_2, P_2)$ the space

$$\Omega_2 = \left\{ \sum_{i=1}^N \delta_{t_i} : (t_i)_{i=1, \ldots, N} \in \mathbb{R}_+, N \in \mathbb{N} \cup \{\infty\} \right\},$$

with the σ-algebra and probability measure \mathcal{F}_2, P_2 under which the canonical random measure is Poisson with mean measure μ on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ defined as

$$\mu(A) = \int_{A \cap \{\phi \neq 0\}} \frac{1}{\phi_2^2} ds, \quad A \in \mathcal{B}(\mathbb{R}_+).$$

Mathematics Subject Classification (1991): 60H05, 60G44, 60H07.

Keywords and phrases. Multiple stochastic integrals, Independence, Martingales.
With this notation, \((N_t)_{t \in \mathbb{R}_+}\) is written as \(N_t(\omega_2) = \omega_2([0, t])\), and \((B_t)_{t \in \mathbb{R}_+}\) satisfies \(B_t(\omega_1) = \omega_1(t), \ t \in \mathbb{R}_+\). For \(A \in \mathcal{B}(\mathbb{R}_+)\) we call \(\mathcal{F}_t^A\) the \(\sigma\)-algebra on \(\Omega_2\) generated by all random variables \(\omega_2 \mapsto \omega_2(A \cap B), B \in \mathcal{B}(\mathbb{R}_+)\). The martingale \(M\) is then explicitly constructed as \(M_t(\omega_1, \omega_2) = X_t(\omega_2) + B_t(\omega_1), \ t \in \mathbb{R}_+,\) on \((\Omega, \mathcal{F}, P) = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, P_1 \otimes P_2)\), where

\[
X_t = \int_0^t \phi_s(dN_s - ds/\phi_t^2), \quad t \in \mathbb{R}_+.
\]

If \(f_n \in L^2(\mathbb{R})^{\otimes n}\), the multiple stochastic integral with respect to \(M, X, B\) of \(f_n\) are respectively defined as

\[
I_n(f_n) = n! \int_0^\infty \cdots \int_0^\infty \int_0^t f_n(t_1, \ldots, t_n) dM_{t_1} \cdots dM_{t_n}, \quad (3)
\]

\[
I_n^X(f_n) = n! \int_0^\infty \cdots \int_0^t \int_0^\infty f_n(t_1, \ldots, t_n) dX_{t_1} \cdots dX_{t_n}, \quad (4)
\]

\[
I_n^B(f_n) = n! \int_0^\infty \int_0^t \int_0^\infty f_n(t_1, \ldots, t_n) dB_{t_1} \cdots dB_{t_n}, \quad (5)
\]

where \(\hat{f}_n\) is the symmetrization in \(n\) variables of \(f_n\). We note the relation

\[
I_n(f_n) = \sum_{i=0}^{\lceil \frac{n}{2} \rceil} \binom{n}{k} I_{n-k}^X(I_k^B(\hat{f}_n)) = \sum_{i=0}^{\lceil \frac{n}{2} \rceil} \binom{n}{k} I_{n-k}^B(I_k^X(\hat{f}_n)), \quad (6)
\]

Let \(L^2(\mathbb{R}_+)^{\otimes n}\) denote the subspace of \(L^2(\mathbb{R}_+)^{\otimes n}\) made of symmetric functions. Let \(f_n \otimes g_m\) denote the completed tensor product of two functions \(f_n \in L^2(\mathbb{R}_+)^{\otimes n}\) and \(g_m \in L^2(\mathbb{R}_+)^{\otimes m}\), and let \(f_n \circ g_m\) denote the symmetrization of \(f_n \otimes g_m, n, m \in \mathbb{N}\). Since \(d < M, M > 1 = dt\), we have

\[
E[I_n(f_n)I_m(g_m)] = n!(f_n, g_m)_{L^2(\mathbb{R}_+)^{\otimes n}} \mathbb{1}_{\{n=m\}}, \quad f_n \in L^2(\mathbb{R}_+)^{\otimes n}, g_m \in L^2(\mathbb{R}_+)^{\otimes m}, \quad (7)
\]

Since \((M_t)_{t \in \mathbb{R}_+}\) has the chaos representation property, any square integrable functional \(F \in L^2(\Omega, \mathcal{F}, P)\) has a chaos expansion

\[
F = \sum_{n \geq 0} I_n(f_n), \quad f_n \in L^2(\mathbb{R}_+)^{\otimes k}, k \geq 0.
\]

A linear operator \(\nabla : L^2(\Omega) \to L^2(\Omega) \otimes L^2(\mathbb{R}_+)^{\otimes n}\) is defined by annihilation as

\[
\nabla f_n(\omega) = nI_{n-1}(f_n(\cdot, t)), \quad t \in \mathbb{R}_+, \quad (8)
\]

\(f_n \in L^2(\mathbb{R}_+)^{\otimes n}, n \in \mathbb{N}^*,\) cf. e.g. [5]. This operator is closable, of \(L^2\)-domain \(Dom_2(\nabla)\), and its closed adjoint \(\nabla^* : L^2(\Omega) \otimes L^2(\mathbb{R}_+) \to L^2(\Omega)\) satisfies

\[
\nabla^* I_n(f_{n+1}) = I_{n+1}(\hat{f}_{n+1}),
\]
\[f_{n+1} \in L^2(\mathbb{R}_+)^{\infty} \otimes L^2(\mathbb{R}_+). \] We denote by \(\text{Dom}_1(\nabla) \) the set of functionals \(F \in L^2(\Omega) \) such that there exists a sequence \((F_n)_{n \in \mathbb{N}} \subset \text{Dom}_2(\nabla) \) converging to \(F \) in \(L^2(\Omega) \) and such that \((\nabla F_n)_{n \in \mathbb{N}} \) converges in \(L^1(\Omega \times \mathbb{R}_+) \). The limit of the sequence \((\nabla F_n)_{n \in \mathbb{N}} \) is denoted \(\nabla F \) which is well-defined, due to the relation
\[
E[|\nabla F_n|_{L^2(\mathbb{R}_+)}] = E[|\nabla F|^*(u)], \quad n \in \mathbb{N},
\]
\(u \in \text{Dom}(\nabla^*) \cap L^\infty(\Omega \times \mathbb{R}_+) \), and since \(\text{Dom}(\nabla^*) \cap L^\infty(\Omega \times \mathbb{R}_+) \) is dense in \(L^1(\Omega \times \mathbb{R}_+) \). For \(f_n \in L^2(\mathbb{R}_+)^{\infty} \) and \(g_m \in L^2(\mathbb{R}_+)^{\infty} \), we define \(f_n \otimes_k g_m \), \(0 \leq l \leq k \), to be the function\[
(x_{i+1}, \ldots, x_n, y_{k+1}, \ldots, y_m) \mapsto \phi(x_{i+1}) \cdots \phi(x_k) \int_{\mathbb{R}^l} f_n(x_1, \ldots, x_n)g_m(x_1, \ldots, x_k, y_{k+1}, \ldots, y_m)dx_1 \cdots dx_l
\]of \(n+m-k-l \) variables. We denote by \(f_n \otimes_k^l g_m \) the symmetrization in \(n+m-k-l \) variables of \(f_n \otimes_k g_m \), \(0 \leq l \leq k \).

Definition 1 Let \(\mathcal{S} \) denote the vector space in \(L^2(\Omega) \) generated by
\[
\{I_n(f_1 \cdots f_n) : f_1, \ldots, f_n \in \mathcal{C}_c(\mathbb{R}_+), \ n \geq 1\}.
\]
The vector space \(\mathcal{S} \) is dense in \(L^2(\Omega) \). For \(F \in \mathcal{S} \) and \(f \in L^2(\mathbb{R}_+) \), we have from a general result in quantum stochastic calculus, cf. for example Th. II.1 of [1]:
\[
F \int_0^\infty f(s)dM_s = \int_0^\infty f(s)\nabla_s Fds + \nabla^*(JF) + \nabla^*(\phi f \nabla F).
\]
(9)
This formula is usually stated under the form
\[
\int_0^\infty f(s)dM_s = \int_0^\infty f(s)da^- + \int_0^\infty f(s)da^+ + \int_0^\infty \phi_s f(s)da^0
\]
by quantum probabilists, where \(\int_0^\infty f(s)dM_s \) is identified to a multiplication operator. The identity (9) can be easily rewritten into a multiplication formula between first and \(n \)th order stochastic integrals:

\[
I_1(h)I_n(f_n) = I_{n+1}(f_n \circ h) + n \int_0^\infty h_tI_{n-1}(f_n(\cdot, t))dt + nI_n(f_n \circ_1^0(\phi h)).
\]
(10)
We note that as a consequence of this formula, every element of \(\mathcal{S} \) has a unique expression as a polynomial in single stochastic integrals and conversely, any polynomial in stochastic integrals has a finite chaos expansion.

Remark 1 This implies that each element of \(\mathcal{S} \) has a version which is defined for every \(\omega \) \((\omega_1, \omega_2) \in \Omega \), since \(I_1(f) \in \mathcal{S} \) can be written as
\[
I_1(f) = -\int_0^\infty f'(s)B_s 1_{\{\phi_s = 0\}}ds + \sum_{\{t : dN_t = 1\}} \phi_t f(t) - \int_0^\infty 1_{\{\phi_s \neq 0\}}f(s)\frac{1}{\phi_s}ds.
\]
Throughout this paper, \(F \in \mathcal{S} \) will always refer to the version of \(F \) defined via the above identity.
From (10), one can prove the following result which shows that the function ϕ accounts for the perturbation of the usual derivation rule for the Malliavin derivative on Wiener space.

Proposition 1 For any $F, G \in S$ we have
\[
\nabla_t(FG) = F \nabla_t G + G \nabla_t F + \phi_t \nabla_t F \nabla_t G, \quad t \in \mathbb{R}_+.
\]
(11)
If $\phi \in L^\infty(\mathbb{R}_+)$ then for any $F, G \in \text{Dom}_2(\nabla)$, we have $FG \in \text{Dom}_1(\nabla)$ and the above relation holds.

Proof. We first notice that for $F = I_1(h)$ and $G = I_n(f_n)$, this formula is a consequence of the multiplication formula (10), since
\[
\nabla_t(I_1(h)I_n(f_n)) \\
= \nabla_t \left(I_{n+1}(f_n \circ h) + n \int_0^\infty h_s I_{n-1}(f_n(\cdot, s) ds + n I_n(f_n \circ h) \right)
\]
\[
= I_n(f_n) \nabla I_1(h) + n I_n(f_n(\cdot, t) \circ h) + n(n-1) \int_0^\infty h_s I_{n-2}(f_n(\cdot, t, s)) ds \\
+ n(n-1) I_n(f_n(\cdot, t) \circ h) + \phi_t \nabla I_1(h) I_n(f_n) \\
= I_n(f_n) \nabla I_1(h) + I_1 \nabla I_n(f_n) + \phi_t \nabla I_1(h) \nabla I_n(f_n).
\]
Next, we prove by induction on $k \geq 1$ that
\[
\nabla_t(I_n(f_n)I_1(h)^k) = I_1(h) \nabla I_n(f_n) + I_n(f_n) \nabla I_1(h)^k + \phi_t \nabla I_1(h)^k \nabla I_n(f_n).
\]
We have
\[
\nabla_t(I_n(f_n)I_1(h)^{k+1}) \\
= I_1(h)^k \nabla I_n(f_n)I_1(h) + I_n(f_n)I_1(h) \nabla I_1(h)^k \\
+ \phi_t \nabla I_1(h)^k \nabla I_n(f_n)I_1(h) \\
= I_1(h)^k \nabla I_n(f_n)I_1(h) + I_n(f_n)I_1(h) \nabla I_1(h)^k + I_n(f_n)I_1(h)^k \nabla I_n(f_n)I_1(h) \\
+ \phi_t I_n(f_n)I_1(h) \nabla I_1(h)^k + \phi_t I_n(f_n)I_1(h)^k \nabla I_n(f_n)I_1(h) \\
+ \phi_t I_n(f_n)I_1(h)^k \nabla I_n(f_n)I_1(h) \\
= I_1(h)^k \nabla I_n(f_n) + I_n(f_n) \nabla I_1(h)^{k+1} + \phi_t \nabla I_1(h)^{k+1} \nabla I_n(f_n).
\]
Consequently, (11) holds for any polynomial in single stochastic integrals, hence it holds for any $F, G \in S$. In order to prove the second part of the proposition, we assume that $F, G \in \text{Dom}_2(\nabla)$ and choose two sequences $(F_n)_{n \in \mathbb{N}}$ and $(G_n)_{n \in \mathbb{N}}$ contained in S, converging respectively to F and G in $L^2(\Omega)$ and such that $(\nabla F_n)_{n \in \mathbb{N}}$ and $(\nabla G_n)_{n \in \mathbb{N}}$ converge to ∇F and ∇G in $L^1(\Omega \times \mathbb{R}_+)$. Then $(\phi \nabla F_n \nabla G_n)_{n \in \mathbb{N}}$ converges in $L^1(\Omega \times \mathbb{R}_+)$ to $\phi \nabla F \nabla G$, hence $(\nabla F_n G_n)_{n \in \mathbb{N}}$ converges in $L^1(\Omega \times \mathbb{R}_+)$ to $F \nabla G + G \nabla F + \phi \nabla F \nabla G$, and $FG \in \text{Dom}_1(\nabla)$. □

The product rule for ∇ unifies the chain rule of derivation of the Wiener space Malliavin derivative and the finite difference rule of the Poisson space gradient of [8].
Proposition 2 For any \(F \in S \) we have

\[
\nabla_t F = \lim_{\varepsilon \to 0} \frac{F(M + (\varepsilon + \phi_t)1_{[t, \infty[}(\cdot)) - F(M)}{\varepsilon + \phi_t}, \quad t \in \mathbb{R}_+.
\]

(12)

Proof. The statement (12) can be more precisely formulated as

\[
\nabla_t F(\omega_1, \omega_2) = \lim_{\varepsilon \to 0} \frac{F(\omega_1 + \varepsilon 1_{[t, \infty[}, \omega_2 + \phi_t(\delta_t)) - F(\omega_1, \omega_2)}{\varepsilon + \phi_t},
\]

where the notation \(F \) refers to the version defined in Remark 1. We first show that (12) holds for \(F = I_1(f) \):

\[
\lim_{\varepsilon \to 0} \frac{F(\omega_1 + \varepsilon 1_{[t, \infty[}, \omega_2 + \phi_t(\delta_t)) - F(\omega_1, \omega_2)}{\varepsilon + \phi_t} = \left(1_{\{\phi_t \neq 0\}} \frac{1}{\phi_t} \left(\sum_{\{s : dN_s = 1\}} \phi_s f(s) - \int_0^\infty 1_{\{\phi_s \neq 0\}} f(s) \frac{1}{\phi_s} ds + \phi_t f(t) \right) \right.
\]

\[
- \sum_{\{s : dN_s = 1\}} \phi_s f(s) - \int_0^\infty 1_{\{\phi_s \neq 0\}} f(s) \frac{1}{\phi_s} ds + 1_{\{\phi_t \neq 0\}} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(- \int_0^\infty f'(s)(B_s + \varepsilon)1_{[t, \infty[}(s)1_{\{\phi_s \neq 0\}} ds + \int_0^\infty f'(s)B_s 1_{\{\phi_s \neq 0\}} ds \right)
\]

\[
= 1_{\{\phi_t \neq 0\}} f(t) + 1_{\{\phi_t \neq 0\}} f(t) = f(t), \quad t \in \mathbb{R}_+.
\]

Moreover, the limit (12) satisfies the product rule (11), hence if \(F, G \in S \) are of the form \(F = I_1(f) \) and \(G = I_1(g) \), we have

\[
\lim_{\varepsilon \to 0} \frac{(FG) \left(M + (\varepsilon + \phi_t)1_{[t, \infty[}(\cdot)) - (FG)(M)\right)}{\varepsilon + \phi_t} = F \nabla_t G + G \nabla_t F + \phi_t \nabla_t (FG)
\]

\[
= \nabla_t (FG), \quad t \in \mathbb{R}_+.
\]

Thus by induction, (12) holds for any polynomial in single stochastic integrals, and for any element of \(S \). \(\square \)

With help of Prop. 11, the following multiplication formula has been proved in [9], as a generalization of (10). We refer to p. 216 of [2], and to [4], [13], [14], for different versions of this formula in the Poisson case. In [11] a more general result is proven, allowing to represent the product \(I_n(f_n)I_m(g_m) \) as a sum of \(n \wedge m \) terms that are not necessarily linear combinations of multiple stochastic integrals with respect to \((M_t)_{t \in \mathbb{R}_+} \), except if \(d[M, M]_t \) is a linear deterministic combination of \(dt \) and \(dM_t \), cf. [10].
Proposition 3 The product $I_n(f_n)I_m(g_m) \in L^2(\Omega)$ is in $L^2(B)$ if and only if the function

$$h_{n,m,s} = \sum_{i \leq 2! \leq 2(s \wedge m)} i! \left(\begin{array}{c} n \\ i \\ \end{array} \right) \left(\begin{array}{c} m \\ i \\ \end{array} \right) (s-i)_i^\alpha g_m$$

is in $L^2(\mathbb{R}_+)^{s+2} \cap \cap^m$, $0 \leq s \leq 2(n \wedge m)$, and in this case the chaotic expansion of $I_n(f_n)I_m(g_m)$ is

$$I_n(f_n)I_m(g_m) = \sum_{s=0}^{2(n \wedge m)} I_{n+m-s}(h_{n,m,s}).$$ (13)

The fact that $I_n(f_n)I_m(g_m)$ can be expanded as a sum of multiple stochastic integrals with respect to $(M_t)_{t \in \mathbb{R}_+}$ is essential in the proof of independence, cf. Th. 1.

2 Independence of multiple stochastic integrals

In the case of single stochastic integrals, the following proposition extends the result of [15] to a process that does not have stationary increments. In the case of multiple stochastic integrals, it extends the result of [17] since it includes a Poisson component in the martingale $(M_t)_{t \in \mathbb{R}_+}$.

Theorem 1 Let $f_n \in L^2(\mathbb{R}_+)^{s_2} \cap \cap^m$ and $g_m \in L^2(\mathbb{R}_+)^{s_3} \cap \cap^m$. The random variables $I_n(f_n)$ and $I_m(g_m)$ are independent and if and only if $f_n \circ \phi g_m = 0$ and $f_n \circ \phi g_m = 0$ a.e., i.e.

$$\int_0^\infty f_n(t,x_1,x_2,\ldots,x_n)g_m(t,x_{n+1},\ldots,x_{n+m-2})dt = 0, \quad dx_2 \cdots dx_{n+m-2} \text{ a.e. (14)}$$

and

$$f_n(x_1,x_2,\ldots,x_n)g_m(x_1,x_{n+1},\ldots,x_{n+m-1}) = 0, \quad |\phi_x| \cdot dx_1 dx_2 \cdots dx_{n+m-1} \text{ a.e. (15)}$$

Proof. If $I_n(f_n)$ and $I_m(g_m)$ are independent, then $I_n(f_n)I_m(g_m) \in L^2(\Omega, \mathcal{F}, P)$ and following [16],

$$|f_n \circ \phi g_m|_{L^2(\mathbb{R}_+)^{s_2+s_3} \cap \cap^m} = (n+m)! |f_n \circ \phi g_m|_{L^2(\mathbb{R}_+)^{s_2+s_3} \cap \cap^m} \geq n! m! |f_n|_{L^2(\mathbb{R}_+)^{s_2} \cap \cap^m} \cdot |g_m|_{L^2(\mathbb{R}_+)^{s_3} \cap \cap^m} = E[I_n(f_n)^2] \cdot E[I_m(g_m)^2] = E[(I_n(f_n)I_m(g_m))^2]$$

$$= \sum_{r=0}^{2(n \wedge m)} (n+m-r)! |h_{n,m,r}|_{L^2(\mathbb{R}_+)^{s_2+s_3} \cap \cap^m}.$$
We obtain \(f_n \circ_0 g_m = 0 \) a.e., and \(f_n \circ_1 g_m = 0 \) a.e.

Conversely, if (14) is satisfied, then \(dP_2(\omega_2) \) almost surely, \(I_n(f_n)(\cdot, \omega_2) \) and \(I_m(g_m)(\cdot, \omega_2) \) are Wiener integrals of square-integrable functions that also satisfy (14), hence \(I_n(f_n)(\cdot, \omega_2) \) is independent of \(I_m(g_m)(\cdot, \omega_2) \) under \(P_1 \) from [16], and for any \(u, v \in \mathbb{C}_b(\mathbb{R}), \)

\[
\int_{\Omega} u(I_n(f_n))v(I_m(g_m))dP_1 = \int_{\Omega_1} u(I_n(f_n))dP_1 \int_{\Omega_1} v(I_m(g_m))dP_1, \quad dP_2(\omega_2) - \text{a.s.}
\]

If further (15) is satisfied, we choose two version \(\tilde{f}_n \) and \(\tilde{g}_m \) of \(f_n, g_m \) and let

\[
A = \{ s : \| f_n(s, \cdot) \|_{L^2(\mathbb{R}^+_1)^{(n-1)}} \neq 0 \text{ and } \phi_s \neq 0 \},
\]

and

\[
B = \{ s : \| g_m(s, \cdot) \|_{L^2(\mathbb{R}^+_1)^{(n-1)}} \neq 0 \text{ and } \phi_s \neq 0 \}
\]

Then \(\int_{\Omega_1} u(I_n(f_n))dP_1 \) and \(\int_{\Omega_1} v(I_m(g_m))dP_1 \) are respectively \(\mathcal{F}^A_1 \)-measurable and \(\mathcal{F}^B_1 \)-measurable. Moreover,

\[
0 = \int_0^\infty \| \tilde{f}_n(s, \cdot) \|_{L^2(\mathbb{R}^+_1)^{(n-1)}} \| \tilde{g}_m(s, \cdot) \|_{L^2(\mathbb{R}^+_1)^{(n-1)}} | \phi_s | ds
\]

\[
= \int_{A \cap B} \| \tilde{f}_n(s, \cdot) \|_{L^2(\mathbb{R}^+_1)^{(n-1)}} \| \tilde{g}_m(s, \cdot) \|_{L^2(\mathbb{R}^+_1)^{(n-1)}} | \phi_s | ds,
\]

hence \(\mu(A \cap B) = 0 \) and \(\mathcal{F}^A_1, \mathcal{F}^B_2 \) are independent \(\sigma \)-algebras because \((N_t)_{t \in \mathbb{R}^+_1} \) has independent increments, and

\[
\int_{\Omega} u(I_n(f_n))v(I_m(g_m))dP = \int_{\Omega} u(I_n(f_n))dP \int_{\Omega} v(I_m(g_m))dP, \quad u, v \in \mathbb{C}_b(\mathbb{R}),
\]

proving the independence of \(I_n(f_n) \) and \(I_m(g_m) \). \(\square \)

The following corollaries, cf. [16], [17], can be extended from the Wiener case to the martingale \((M_t)_{t \in \mathbb{R}^+_1} \).

Proposition 4 Two arbitrary families \(\{ I_n(f_{n_k}) : k \in I \} \) and \(\{ I_m(g_{m_l}) : l \in J \} \) of Poisson multiple stochastic integrals are independent if and only if \(I_n(f_{n_k}) \) is independent of \(I_m(g_{m_l}) \) for any \(k \in I, l \in J \).
Proof. We start by considering families of the form \{I_n(f_n)\}, \{I_k(g_k), I_m(h_m)\}. If \(I_n(f_n)\) is independent of \(I_k(g_k)\) and \(I_n(f_n)\) is independent of \(I_m(h_m)\), then \((14)\) is satisfied for \(f_n, g_k\) and for \(f_n, g_m\). Moreover, \(dP_2(\omega_2)\) almost surely, \(I_n(f_n)(\cdot, \omega_2)\), \(I_k(g_k)(\cdot, \omega_2)\) and \(I_m(h_m)(\cdot, \omega_2)\) are multiple Wiener integrals of square-integrable functions that also satisfy \((14)\), hence for \(u \in \mathcal{C}_0(\mathbb{R})\) and \(v \in \mathcal{C}_0(\mathbb{R}^2)\), \(u(I_n(f_n))(\cdot, \omega_2)\) is independent of \(v(I_k(g_k), I_m(h_m))(\cdot, \omega_2)\) under \(P_1\) from the analog of this proposition in \([16]\), and

\[
\int_{\Omega_1} u(I_n(f_n))v(I_k(g_k), I_m(h_m))dP_1 = \int_{\Omega_1} u(I_n(f_n))dP_1 \int_{\Omega_1} v(I_k(g_k), I_m(h_m))dP_1,
\]

\(dP_2(\omega_2)\)-a.s.

We choose three versions \(f_n, g_k, h_m\) of \(f_n, g_k, h_m\), and let

\[
A = \{ s : \| f_n(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \neq 0 \text{ and } \phi_s \neq 0 \},
\]

\[
B = \{ s : \| g_k(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \neq 0 \text{ and } \phi_s \neq 0 \},
\]

and

\[
C = \{ s : \| f_m(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \neq 0 \text{ and } \phi_s \neq 0 \}.
\]

Since \(I_n(f_n)\) is independent of \(I_k(g_k)\) and \(I_n(f_n)\) is independent of \(I_m(h_m)\), \((15)\) holds for \(f_n, g_k\) and \(f_n, h_m\). This implies

\[
0 = \int_0^\infty \| f_n(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \| g_k(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \| \phi_s \| ds
\]

\[
= \int_{A \cap B} \| f_n(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \| g_k(s, \cdot) \|_{L^2(\mathbb{R}^+)}^{(s- \cdot)} \| \phi_s \| ds,
\]

hence \(\mu(A \cap B) = 0\) and in the same way we get \(\mu(A \cap C) = 0\), hence \(\mu(A \cap (B \cup C)) = 0\). Consequently, \(F_2^A\) is independent of \(F_2^{B \cup C}\) since \((N_t)_{t \in \mathbb{R}^+}\) has independent increments. Moreover, \(\int_{\Omega_1} u(I_n(f_n))dP_1\) and \(\int_{\Omega_1} v(I_k(g_k), I_m(h_m))dP_1\) are respectively \(F_2^A\) and \(F_2^{B \cup C}\)-measurable, hence

\[
\int_{\Omega_1} u(I_n(f_n))v(I_k(g_k), I_m(h_m))dP = \int_{\Omega_1} u(I_n(f_n))dP \int_{\Omega_1} v(I_k(g_k), I_m(h_m))dP,
\]

\(u \in \mathcal{C}_0(\mathbb{R}), v \in \mathcal{C}_0(\mathbb{R}^2)\), and \(u(I_n(f_n))\) is independent of \(v(I_k(g_k), I_m(h_m))\). The above proof generalizes to arbitrary families of multiple stochastic integrals. \(\square\)

Corollary 1 Let \(f_n \in L^2(\mathbb{R}^+)^{\alpha_n}, g_m \in L^2(\mathbb{R}^+)^{\alpha_m}\), and

\[
S_{f_n} = \{ f_n \circ_{\alpha_n} h : h \in L^2(\mathbb{R}^+) \}, \quad S_{g_m} = \{ g_m \circ_{\alpha_m} h : h \in L^2(\mathbb{R}^+) \}.
\]

The following statements are equivalent.

(i) \(I_n(f_n)\) is independent of \(I_m(g_m)\).

(ii) For any \(f \in S_{f_n}\) and \(g \in S_{g_m}\) we have \(fg = 0\), \(| \phi_t | dt\)-a.e. and \((f, g)_{L^2(\mathbb{R}^+)} = 0\).

(iii) The \(\sigma\)-algebras \(\sigma(I_1(f) : f \in S_{f_n})\) and \(\sigma(I_1(g) : g \in S_{g_m})\) are independent.
INDEPENDENCE OF STOCHASTIC INTEGRALS

Proof. (i) \Leftrightarrow (ii) relies on the fact that any $f \in S_f$ and $g \in S_g$ can be written as $f = f_n \circ^{m-1}_{n-1} h$, $g = g_m \circ^{m-1}_{m-1} k$ with $h \in L^2(\mathbb{R}_+)^{m-1}$, $k \in L^2(\mathbb{R}_+)^{m-1}$, and that $\phi_f(t)g(t) = (f_n \otimes^i g_m(t), h \otimes k)_{L^2(\mathbb{R}_+)^{m+n-1}}$, $t \in \mathbb{R}_+$, and $(f,g)_{L^2(\mathbb{R}_+)} = (f_n \circ^i_{n-1} g_m, h \otimes k)_{L^2(\mathbb{R}_+)^{m+n-1}}$. (ii) \Leftrightarrow (iii) is a consequence of Prop. 4. □

Let $(h_k)_{k \in \mathbb{N}_*}$ be an orthonormal basis of $L^2(\mathbb{R}_+)$. For simplicity, we denote by

$$\sigma(I_n(f_n), \nabla I_n(f_n), \ldots, \nabla^{n-1} I_n(f_n))$$

the σ-algebra

$$\sigma \left(I_n(f_n), \left(\nabla I_n(f_n), h_k^j \right)_{L^2(\mathbb{R}_+)} \right) \right.$$

\[\left(\nabla^{n-1} I_n(f_n), h_{k_{n-1}^i} \circ \ldots \circ h_{k_{n-1}^n} \right)_{L^2(\mathbb{R}_+)^{m+n-1}}, \quad k_i^j \in \mathbb{N}_*, \quad 1 \leq i \leq j \]

Corollary 2 The multiple stochastic integrals $I_n(f_n)$ and $I_m(g_m)$ are independent if and only if the σ-algebras

$$\sigma(I_n(f_n), \nabla I_n(f_n), \ldots, \nabla^{n-1} I_n(f_n))$$

and

$$\sigma(I_m(g_m), \nabla I_m(g_m), \ldots, \nabla^{m-1} I_m(g_m))$$

are independent.

Proof. This is a consequence of Th. 1, Prop. 4, and the definition (8) of ∇. □

Let λ denote the Lebesgue measure on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$.

Corollary 3 If $F \in Dom_2(\nabla)$ and $G \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ with $G = \sum_{m \geq 0} I_m(g_m)$, then F is independent of G if for any $m \geq 1$,

$$g_m \circ^1_1 \nabla F = 0 \quad \lambda^{\otimes (m-1)} \otimes \mathbb{P} - a.e. \quad \text{and} \quad g_m \circ^0_1 \nabla F = 0, \quad \lambda^{\otimes m} \otimes \mathbb{P} - a.e. \quad (16)$$

Proof. Assume that $F = \sum_{n \geq 0} I_n(f_n)$. Condition (16) is equivalent to $g_m \circ^1_1 f_n = 0$ and $g_m \circ^0_1 f_n = 0$ a.e. for any $n, m \in \mathbb{N}$, since the decomposition $\nabla F = \sum_{n \geq 0} nI_{n-1}(f_n)$ is orthogonal in $L^2(\Omega) \otimes L^2(\mathbb{R}_+)$. The result follows then from Th. 1 and Prop. 4. □

Remarks. a) In the Poisson case, the results of this paper can also be obtained for a Poisson measure on a metric space with a σ-finite diffuse measure.

b) The independence criterion also means that $I_n(f_n)$ and $I_m(g_m)$ are independent if and only if their Wick product coincides with their ordinary product:

$$I_n(f_n)I_m(g_m) = I_{n+m}(f_n \circ g_m) = I_n(f_n) : I_m(g_m).$$
References

Nicolas Privault, Équipe d’Analyse et Probabilités, Université d’Evry-Val d’Essonne, Boulevard des Coquibus, 91025 Evry Cedex, France