This chapter deals with the structural approach to credit risk, in which default occurs when the assets of a firm drop below a certain pre-defined level. We also consider the possibility to correlate multiple default times in this model.

6.1 Merton Model

The Merton [43] credit risk model reframes corporate debt as an option on a firm’s underlying value. Precisely the value S_t of a firm’s asset is modeled by a geometric Brownian motion

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

under the historical measure \mathbb{P}. Recall that S_t is modeled as

$$dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$$

under the risk-neutral probability measure \mathbb{P}^*. The company debt is represented by an amount K in bonds to be paid at maturity T, cf. § 4.1 of [23].

Default occurs if $S_T < K$ with probability $\mathbb{P}(S_T < K)$, the bond holder will receive the recovery value S_T. Otherwise, if $S_T \geq K$ the bond holder receives K and the equity holder is entitled to receive $S_T - K$, which can be represented as $(S_T - K)^+$ in general. The default probability $\mathbb{P}(S_T < K \mid \mathcal{F}_t)$ can be computed from the lognormal distribution of S_T as
\[\mathbb{P}(S_T < K | \mathcal{F}_t) = \mathbb{P}(S_0 e^{\sigma B_T + (\mu - \sigma^2/2)T} < K | \mathcal{F}_t) \]
\[= \mathbb{P}(B_T < (-\mu - \sigma^2/2)T + \log(K/S_0)/\sigma | \mathcal{F}_t) \]
\[= \mathbb{P}(B_T - B_t + y < (-\mu - \sigma^2/2)T + \log(K/S_0)/\sigma)_{y=B_t} \]
\[= \frac{1}{\sqrt{2\pi(T-t)}} \int_{-\infty}^{(-\mu - \sigma^2/2)(T-t) + \log(K/S_0)/\sigma} e^{-x^2/(2(T-t))} dx \]
\[= \frac{1}{2\pi} \int_{-\infty}^{(-\mu - \sigma^2/2)(T-t) + \log(K/S_0)/\sigma\sqrt{T-t}} e^{-x^2/2} dx \]
\[= 1 - \Phi \left(\frac{(-\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma\sqrt{T-t}} \right) \]
\[= 1 - \Phi(d_{\mu}^-) \]
\[= \Phi(-d_{\mu}^-) \]
\[= \Phi \left(-\frac{(-\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma\sqrt{T-t}} \right), \]

where \(\Phi \) is the cumulative distribution function of the standard normal distribution, and

\[d_{\mu}^- := \frac{(-\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma\sqrt{T-t}}. \]

Note that under the risk-neutral probability measure \(\mathbb{P}^* \) we have, replacing \(\mu \) with \(r \),

\[\mathbb{P}^*(S_T < K | \mathcal{F}_t) = \Phi(-d_{\mu}^-), \]

with

\[d_{\mu}^- = \frac{(r - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma\sqrt{T-t}}, \]

which implies the relation

\[d^r_- = d_{\mu}^- - \frac{\mu - r}{\sigma} \sqrt{T-t} \]

or

\[\Phi^{-1}(\mathbb{P}(S_T < K | \mathcal{F}_t)) = -\frac{\mu - r}{\sigma} \sqrt{T-t} + \Phi^{-1}(\mathbb{P}^*(S_T < K | \mathcal{F}_t)). \]

The probability of default of the firm at a time \(\tau \) before \(T \) can be defined as the probability that the level of its assets falls below the level \(K \) at time \(T \). In this case the conditional distribution of \(\tau \) is given by

\[\mathbb{P}(\tau < T | \mathcal{F}_t) := \mathbb{P}(S_T < K | \mathcal{F}_t) \]
\[= \Phi \left(-\frac{(-\mu - \sigma^2/2)(T-t) + \log(S_t/K))}{\sigma\sqrt{T-t}} \right), \quad T \geq t, \]
assuming that $S_t > K$, with the probability density function

$$
 d\mathbb{P}(\tau \leq T \mid \mathcal{F}_t) = \frac{dT}{2\sigma \sqrt{2\pi(T-t)}} \left(\frac{\sigma^2}{2} - \mu + \frac{\log(S_t/K)}{T-t} \right) \exp \left(- \frac{\left((\mu - \frac{\sigma^2}{2}) (T-t) + \log(S_t/K) \right)^2}{2\sigma^2(T-t)} \right),
$$

provided that $\mu < \sigma^2/2$. We have

$$
 \mathbb{P}(\tau < T \mid \mathcal{F}_t) = \mathbb{P}(S_T < K \mid \mathcal{F}_t)
 = \Phi \left(\Phi^{-1}(\mathbb{P}^*(S_T < K \mid \mathcal{F}_t)) - \frac{\mu - r}{\sigma} \sqrt{T-t} \right)
 = \Phi \left(\Phi^{-1}(\mathbb{P}^*(\tau < T \mid \mathcal{F}_t)) - \frac{\mu - r}{\sigma} \sqrt{T-t} \right)
$$

and

$$
 \mathbb{P}^*(\tau < T \mid \mathcal{F}_t) = \mathbb{P}^*(S_T < K \mid \mathcal{F}_t)
 = \Phi \left(- \frac{(r - \sigma^2/2)(T-t) + \log(S_t/K))}{\sigma \sqrt{T-t}} \right)
 = \Phi \left(\Phi^{-1}(\mathbb{P}(S_T < K \mid \mathcal{F}_t)) + \frac{\mu - r}{\sigma} \sqrt{T-t} \right)
 = \Phi \left(\Phi^{-1}(\mathbb{P}(\tau < T \mid \mathcal{F}_t)) + \frac{\mu - r}{\sigma} \sqrt{T-t} \right), \quad (6.1)
$$

Note that when $\mu < r$ we have

$$
 \mathbb{P}(\tau < T \mid \mathcal{F}_t) > \mathbb{P}^*(\tau < T \mid \mathcal{F}_t),
$$

whereas when $\mu > r$ we get

$$
 \mathbb{P}(\tau < T \mid \mathcal{F}_t) < \mathbb{P}^*(\tau < T \mid \mathcal{F}_t),
$$

as in the next figure.
Fig. 6.1: Function $x \mapsto \Phi \left(\Phi^{-1}(x) - (\mu - r)\sqrt{T}/\sigma \right)$ for $\mu > r$, $\mu = r$, and $\mu < r$. The discounted expected cash flow $e^{-(T-t)r} \mathbb{E}^{*}\left[(S_T - K)^+ | \mathcal{F}_t \right]$ received by the equity holder can be estimated at time $t \in [0, T]$ as the price of a European call option from the Black-Scholes formula

$$e^{-(T-t)r} \mathbb{E}^{*}\left[(S_T - K)^+ | \mathcal{F}_t \right] = S_t \Phi \left(\frac{(r + \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma\sqrt{T-t}} \right) - Ke^{-(T-t)r} \Phi \left(\frac{(r - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma\sqrt{T-t}} \right), \quad 0 \leq t \leq T.$$

The amount received by the bond holder at maturity is $\min\{S_T, K\}$, including the recovery value S_T, and it can be priced at time $t \in [0, T]$ from the value of a put option with strike price K on S_T, as

$$e^{-(T-t)r} \mathbb{E}^{*}\left[\min\{S_T, K\} | \mathcal{F}_t \right] = e^{-(T-t)r} K - e^{-(T-t)r} \mathbb{E}^{*}\left[(K - S_T)^+ | \mathcal{F}_t \right] = e^{-(T-t)r} K - (S_t \Phi(-d_+) - Ke^{-(T-t)r} \Phi(-d_-)) = Ke^{-(T-t)r} \Phi(d_-) - S_t \Phi(-d_+),$$

and it can be interpreted at the value $P(t, T)$ at time $t \in [0, T]$ of a default bond with face value 1, maturity T and recovery value $\min(S_T/K, 1)$. Writing

$$P(t, T) = e^{-(T-t)y_{t, T}},$$

$$y_{t, T} = -\frac{1}{T-t} \log(P(t, T)) = -\frac{1}{T-t} \log \left(e^{-(T-t)r} \mathbb{E}^{*}\left[\min\left(1, \frac{S_T}{K}\right) | \mathcal{F}_t \right] \right)$$

94
Structural Approach to Credit Risk

\[r - \frac{1}{T-t} \log \left(\mathbb{E}^* \left[\min \left(1, \frac{S_T}{K} \right) \mid \mathcal{F}_t \right] \right) \]

\[= r - \frac{1}{T-t} \log \left(\frac{1}{K} \mathbb{E}^* \left[\min (K, S_T) \mid \mathcal{F}_t \right] \right) \]

\[= r - \frac{1}{T-t} \log \left(\Phi (d_-) - \frac{S_t}{K} e^{(T-t)r} \Phi (-d_+) \right) \]

\[> r. \]

6.2 Black-Cox Model

In the Black-Cox model [2] the firm has to maintain an account balance above the level \(K \) throughout time, therefore default occurs at the first time the process \(S_t \) hits the level \(K \), cf. § 4.2 of [23]. The default time \(\tau_K \) is therefore the first hitting time

\[\tau_K := \inf \left\{ t \geq 0 : S_0 e^{\sigma B_t + (\mu - \sigma^2/2)t} \leq K \right\}, \]

of the level \(K \) by

\[(S_t)_{t \in \mathbb{R}_+} = (S_0 e^{\sigma B_t + (\mu - \sigma^2/2)t})_{t \in \mathbb{R}_+}, \]

after starting from \(S_0 > K \). Hence the default probability is given from e.g. Corollary 7.2.2 and pages 297-299 of [57], or from Relation (8.7) in [51], as

\[\mathbb{P}(\tau_K \leq T) = \mathbb{P} \left(\min_{t \in [0,T]} S_t \leq K \right) \]

\[= \mathbb{P} \left(\min_{t \in [0,T]} e^{\sigma B_t + (\mu - \sigma^2/2)t} \leq \frac{K}{S_0} \right) \]

\[= \mathbb{P} \left(\min_{t \in [0,T]} \left(B_t + \frac{(\mu - \sigma^2/2)t}{\sigma} \right) \leq \frac{1}{\sigma} \log \left(\frac{K}{S_0} \right) \right) \]

\[= \Phi \left(\frac{\log(K/S_0) - (\mu - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \]

\[+ \left(\frac{S_0}{K} \right)^{1-2\mu/\sigma^2} \Phi \left(\frac{\log(K/S_0) + (\mu - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \]

(6.2)

\[= \mathbb{P}(S_T \leq K) + \left(\frac{S_0}{K} \right)^{1-2\mu/\sigma^2} \Phi \left(\frac{\log(K/S_0) + (\mu - \sigma^2/2)T}{\sigma \sqrt{T}} \right), \]

with \(S_0 \geq K \). In this case, the cash flow

\[\text{(6.2)} \]
\[(S_T - K)^+ \mathbb{1}_{\{\tau_K > T\}} = (S_T - K)^+ \mathbb{1}_{\left\{ \min_{t \in [0, T]} S_t > K \right\}}\]

received at maturity \(T\) by the equity holder can be priced at time \(t \in [0, T]\) as a down-and-out barrier call option with strike price \(K\) and barrier level \(K\), cf. e.g. Chapter 8 of [51], as

\[
\mathbb{E}^* \left[(S_T - K)^+ \mathbb{1}_{\left\{ \min_{0 \leq t \leq T} S_t > K \right\}} \bigg| \mathcal{F}_t \right] = \mathbb{1}_{\left\{ \min_{t \in [0, T]} S_t > B \right\}} g(t, S_t),
\]

\(t \in [0, T]\), where

\[
g(t, S_t) = S_t \Phi \left(\delta_+^{T-t} \left(\frac{S_t}{K} \right) \right) - e^{-(T-t)r} K \Phi \left(\delta_-^{T-t} \left(\frac{S_t}{K} \right) \right) - K \left(\frac{S_t}{K} \right)^{2r/\sigma^2} \Phi \left(\delta_+^{T-t} \left(\frac{K}{S_t} \right) \right) + e^{-(T-t)r} S_t \left(\frac{S_t}{K} \right)^{-2r/\sigma^2} \Phi \left(\delta_-^{T-t} \left(\frac{K}{S_t} \right) \right) = BS_c(S_t, r, T-t, \sigma, K) - S_t \left(\frac{K}{S_t} \right)^{2r/\sigma^2} BS_c(K/S_t, r, T-t, \sigma, 1),
\]

\(0 \leq t \leq T\), cf. Relation (8.12) and Exercise 8.2 in [51].

For \(t \geq 0\), taking now

\[
\tau_K := \inf \left\{ u \geq t : S_0 e^{\sigma B_u + (\mu - \sigma^2/2)u} \leq K \right\},
\]

the recovery value received by the bond holder at time \(\min (\tau_K, T)\) is \(K\), and it can be priced after discounting from time \(\min (\tau_K, T)\) to time \(t \in [0, T]\) as

\[
\mathbb{E}^* \left[K e^{-\min(\tau_K, T-t)r} \big| \mathcal{F}_t \right] = \mathbb{E}^* \left[K e^{-\tau_K r} \mathbb{1}_{\{t \leq \tau_K \leq T\}} + K e^{-(T-t)r} \mathbb{1}_{\{\tau_K > T\}} \big| \mathcal{F}_t \right] = K \mathbb{E}^* \left[e^{-\tau_K r} \mathbb{1}_{\{t \leq \tau_K \leq T\}} \big| \mathcal{F}_t \right] + K e^{-(T-t)r} \mathbb{P}^* (\tau_K > T \big| \mathcal{F}_t) = K \mathbb{1}_{\{\tau_K > t\}} \int_t^T e^{-(u-t)r} d\mathbb{P} (\tau_K < u \big| \mathcal{F}_t) + K e^{-(T-t)r} \mathbb{P}^* (\tau_K > T \big| \mathcal{F}_t),
\]
where $P^*(\tau_K \leq u \mid \mathcal{F}_t)$ and $P^*(\tau_K > T \mid \mathcal{F}_t) = 1 - P^*(\tau_K \leq T \mid \mathcal{F}_t)$ can be computed from (6.2) as

$$P^*(\tau_K \leq u \mid \mathcal{F}_t) = \Phi \left(\frac{\log(K/S_t) - (r - \sigma^2/2)(u - t)}{\sigma \sqrt{u - t}} \right) + \left(\frac{S_t}{K} \right)^{1 - 2r/\sigma^2} \Phi \left(\frac{\log(S_t/K) + (r - \sigma^2/2)(u - t)}{\sigma \sqrt{u - t}} \right),$$

with $S_t \geq K$ and $u > t$, from which the probability density function of the hitting time τ_K can be estimated by derivation with respect to $u > t$.

Note also that we have

$$P^*(\tau_K < \infty \mid \mathcal{F}_t) = \lim_{u \to \infty} P^*(\tau_K \leq u \mid \mathcal{F}_t) = \begin{cases} \left(\frac{K}{S_t} \right)^{-1 + 2r/\sigma^2} & \text{if } r > \sigma^2/2 \\ 1 & \text{if } r \leq \sigma^2/2. \end{cases}$$

6.3 Correlated Default Times

In order to model correlated default and possible “domino effects”, one can regard two given default times τ_1 and τ_2 are correlated random variables.

Namely, given τ_1 and τ_2 two default times we can consider the correlation

$$\rho = \frac{\text{Cov}(\tau_1, \tau_2)}{\sqrt{\text{Var}[\tau_1] \text{Var}[\tau_2]}} \in [-1, 1].$$

When trying to build a dependence structure for the default times τ_1 and τ_2, the idea of [40] is to use the normalized Gaussian copula $C_\Sigma(x, y)$, with

$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix},$$

with correlation parameter $\rho \in [-1, 1]$, and to model the joint default probability $P(\tau_1 \leq T \text{ and } \tau_2 \leq T)$ as

$$P(\tau_1 \leq T \text{ and } \tau_2 \leq T) := C_\Sigma(P(\tau_1 \leq T), P(\tau_2 \leq T)).$$
where C_Σ is given by (5.4).

Given two default events $A = \{\tau_1 \leq T\}$ and $B = \{\tau_2 \leq T\}$ with probabilities

\[
\mathbb{P}(\tau_1 \leq T) = 1 - \exp \left(- \int_0^T \lambda_1(s)ds \right) \quad \text{and} \quad \mathbb{P}(\tau_2 \leq T) = 1 - \exp \left(- \int_0^T \lambda_2(s)ds \right)
\]

we can also define the default correlation

\[
\rho^D = \frac{\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)}{\sqrt{\mathbb{P}(A)(1 - \mathbb{P}(A))}\sqrt{\mathbb{P}(B)(1 - \mathbb{P}(B))}} \in [-1, 1]. \quad (6.3)
\]

In this case, the default correlation ρ^D in (6.3) can be written as

\[
\rho^D = \frac{C_\Sigma (\mathbb{P}(\tau_1 \leq T), \mathbb{P}(\tau_2 \leq T)) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}}.
\]

When the default probabilities are specified in the Merton model of credit risk as

\[
\mathbb{P}(\tau_i \leq T) = \mathbb{P}(S_T < K)
\]

\[
= \mathbb{P} \left(e^{\sigma_i B_T + (\mu_i - \sigma_i^2 / 2)T} < \frac{K}{S_0} \right)
\]

\[
= \mathbb{P} \left(B_T \leq -\frac{(\mu_i - \sigma_i^2 / 2)T}{\sigma_i} + \frac{1}{\sigma_i} \log \frac{K}{S_0} \right)
\]

\[
= \Phi \left(\frac{\log (K/S_0) - (\mu_i - \sigma_i^2 / 2)T}{\sigma_i \sqrt{T}} \right), \quad i = 1, 2,
\]

where

\[
(A_i^t)_{t \in \mathbb{R}_+} := (S_0 e^{\sigma_i B_t + (\mu_i - \sigma_i^2 / 2)t})_{t \in \mathbb{R}_+}, \quad i = 1, 2,
\]

the default correlation ρ^D becomes

\[
\rho^D = \frac{\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}}
\]

\[
= \Phi_\Sigma \left(\frac{\log (S_0/K) + (\mu_1 - \sigma_1^2 / 2)T}{\sigma_1 \sqrt{T}}, \frac{\log (S_0/K) + (\mu_2 - \sigma_2^2 / 2)T}{\sigma_2 \sqrt{T}} \right) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)
\]

\[
= \frac{\Phi_\Sigma \left(\log (S_0/K) + (\mu_1 - \sigma_1^2 / 2)T, \frac{\log (S_0/K) + (\mu_2 - \sigma_2^2 / 2)T}{\sigma_2 \sqrt{T}} \right) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}}.
\]

In [40] it was suggested to use a single average correlation estimate, see (8.1) page 82 of the Credit Metrics™ Technical Document [25], and also the Appendix F therein.
It is worth noting that the outcomes of this methodology have been discussed in a number of magazine articles in recent years, to name a few:

“Recipe for disaster: the formula that killed Wall Street”, *Wired Magazine*, 23 February 2009, by F. Salmon [56];

“The formula that felled Wall Street”, *Financial Times Magazine*, April 24 2009, by S. Jones [34];

“Formula from hell”, *Forbes.com*, August 8 2009, by S. Lee [39], see also here.

On the other hand, a more proper definition of the default correlation ρ^D should be

$$
\rho^D := \frac{\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T) - \mathbb{P}(\tau_1 \leq T) \mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))} \sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}},
$$

which requires the actual computation of the joint default probability $\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T)$. An exact expression for this joint default probability in the first passage time Black-Cox model, and the associated correlation, have been recently obtained in [41].

Multiple default times

Consider now a sequence $(\tau_k)_{k=1,2,\ldots,n}$ of random default times. As in the Merton [43] model, cf. § 6.1, a common practice [60], [21], [28] is to parametrize the default probability associated to each τ_k by the conditioning

$$
\mathbb{P}(\tau_k \leq T \mid M = m) = \Phi \left(\Phi^{-1} \left(\mathbb{P}(\tau_k \leq T) \right) - a_k m \right) \sqrt{1 - a_k^2}^{-1},
$$

$k = 1, 2, \ldots, n,$

see (6.1), where $a_k \in (-1, 1), k = 1, 2, \ldots, n$, and M is a standardized random variable with probability density function $\phi(m)$ and variance $\text{Var}[M] = 1$. Note that we have

$$
\mathbb{P}(\tau_k \leq T) = \int_{-\infty}^{\infty} \mathbb{P}(\tau_k \leq T \mid M = m) \phi(m) dm
$$

$$
= \int_{-\infty}^{\infty} \Phi \left(\Phi^{-1} \left(\mathbb{P}(\tau_k \leq T) \right) - a_k m \right) \phi(m) dm,
$$

and $\phi(m)$ can be typically chosen as a standard normal Gaussian density function.
The dependence structure presented in the next proposition provides an implementation of the Gaussian copula correlation method [40] in the case of multiple default times.

Proposition 6.1. Define the conditional Gaussian samples X_1, X_2, \ldots, X_n by

$$X_k := a_k M + \sqrt{1 - a_k^2} Z_k, \quad k = 1, 2, \ldots, n,$$

(6.6)

where Z_1, Z_2, \ldots, Z_n are normal random variables with same cumulative distribution function Φ, independent of M, and let

$$\tau_k := F_{\tau_k}^{-1}(\Phi(X_k)), \quad k = 1, 2, \ldots, n,$$

(6.7)

Then the default times $(\tau_k)_{k=1,2,\ldots,n}$ have the joint distribution

$$\mathbb{P}(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n) = C(\mathbb{P}(\tau_1 \leq y_1), \ldots, \mathbb{P}(\tau_n \leq y_n)),$$

where

$$C(x_1, \ldots, x_n) := \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(x_1) - a_1 m}{\sqrt{1 - a_1^2}} \right) \cdots \Phi \left(\frac{\Phi^{-1}(x_n) - a_n m}{\sqrt{1 - a_n^2}} \right) \phi(m) dm,$$

$x_1, x_2, \ldots, x_n \in [0, 1]$, is a Gaussian copula on $[0, 1]^n$ with covariance matrix

$$\Sigma = \begin{bmatrix}
1 & a_1 a_2 & \cdots & a_1 a_{n-1} & a_1 a_n \\
& a_2 a_1 & \ddots & \vdots & \vdots \\
& & \ddots & 1 & a_n a_{n-1} \\
& & & a_n a_1 & a_n a_{n-1} & 1
\end{bmatrix}$$

(6.8)

Proof. We start by recovering the conditional distribution (6.4) as follows:

$$\mathbb{P}(\tau_k \leq T \mid M = m) = \mathbb{P}(F_{\tau_k}^{-1}(\Phi(X_k)) \leq T \mid M = m)$$

$$= \mathbb{P}(\Phi(X_k) \leq F_{\tau_k}(T) \mid M = m)$$

$$= \mathbb{P}(X_k \leq \Phi^{-1}(F_{\tau_k}(T)) \mid M = m)$$

$$= \mathbb{P} \left(a_k m + \sqrt{1 - a_k^2} Z_k \leq \Phi^{-1}(F_{\tau_k}(T)) \right)$$

$$= \mathbb{P} \left(\sqrt{1 - a_k^2} Z_k \leq \Phi^{-1}(F_{\tau_k}(T)) - a_k m \right)$$

$$= \mathbb{P} \left(Z_k \leq \frac{1}{\sqrt{1 - a_k^2}} (\Phi^{-1}(F_{\tau_k}(T)) - a_k m) \right)$$
Structural Approach to Credit Risk

\[P(\tau_k \leq y_k) = P(\tau_1 \leq \infty, \ldots, \tau_k-1 \leq \infty, \tau_k \leq y_k, \tau_{k+1} \leq \infty, \ldots, \tau_n \leq \infty) \]

\[= \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(P(\tau_k \leq y_k)) - a_k m}{\sqrt{1 - a_k^2}} \right) \phi(m) \, dm \]

\[= \int_{-\infty}^{\infty} P(\tau_k \leq T \mid M = m) \phi(m) \, dm, \quad k = 1, 2, \ldots, n. \]

Note that the above recovers the correct marginal distributions \((6.5)\), i.e. we have

\[P(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n \mid M = m) = P(\tau_1 \leq y_1 \mid M = m) \times \cdots \times P(\tau_n \leq y_n \mid M = m), \]

conditionally to \(M = m\). This yields

\[P(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n) = \int_{-\infty}^{\infty} P(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n \mid M = m) \phi(m) \, dm \]

\[= \int_{-\infty}^{\infty} P(\tau_1 \leq y_1 \mid M = m) \cdots P(\tau_n \leq y_n \mid M = m) \phi(m) \, dm \]

\[= \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(P(\tau_1 \leq y_1)) - a_1 m}{\sqrt{1 - a_1^2}} \right) \cdots \Phi \left(\frac{\Phi^{-1}(P(\tau_n \leq y_n)) - a_n m}{\sqrt{1 - a_n^2}} \right) \phi(m) \, dm. \]

In other words, we have

\[P(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n) = C(P(\tau_1 \leq y_1), \ldots, P(\tau_n \leq y_n)), \]

where the function

\[C(x_1, \ldots, x_n) := \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(x_1) - a_1 m}{\sqrt{1 - a_1^2}} \right) \cdots \Phi \left(\frac{\Phi^{-1}(x_n) - a_n m}{\sqrt{1 - a_n^2}} \right) \phi(m) \, dm, \]

\(x_1, x_2, \ldots, x_n \in [0, 1]\), is a Gaussian copula on \([0, 1]^n\), built as

\[C(x_1, \ldots, x_n) = F(\Phi^{-1}(x_1), \ldots, \Phi^{-1}(x_n)), \]

from the Gaussian cumulative distribution function.
\[F(x_1, \ldots, x_n) := \int_{-\infty}^{\infty} \Phi \left(\frac{x_1 - a_1 m}{\sqrt{1 - a_1^2}} \right) \cdots \Phi \left(\frac{x_n - a_n m}{\sqrt{1 - a_n^2}} \right) \phi(m) dm \]

\[= \int_{-\infty}^{\infty} \mathbb{P} \left(Z_1 \leq \frac{x_1 - a_1 m}{\sqrt{1 - a_1^2}} \right) \cdots \mathbb{P} \left(Z_n \leq \frac{x_n - a_n m}{\sqrt{1 - a_n^2}} \right) \phi(m) dm \]

\[= \int_{-\infty}^{\infty} \mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n \mid M = m) \phi(m) dm \]

\[= \mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n), \quad 0 \leq x_1, x_2, \ldots, x_n \leq 1, \]

of the vector \((X_1, \ldots, X_n)\), with covariance matrix given by (6.8). \hfill \square

When \(n = 2\) we find

\[\Sigma = \begin{bmatrix} 1 & a_1 a_2 \\ a_2 a_1 & 1 \end{bmatrix}, \]

and letting

\[\alpha^2 := 1 + \frac{a_1^2}{1 - a_1^2} + \frac{a_2^2}{1 - a_2^2} \]

\[= \frac{(1 - a_1^2)(1 - a_2^2) + a_1^2(1 - a_2^2) + a_2^2(1 - a_1^2)}{(1 - a_1^2)(1 - a_2^2)} \]

\[= \frac{1 - a_2^2 a_1^2}{(1 - a_1^2)(1 - a_2^2)}, \]

we have

\[\Sigma^{-1} = \frac{1}{\alpha^2} \begin{bmatrix} \frac{\alpha^2(1 - a_1^2) - a_1^2}{(1 - a_1^2)^2} & -\frac{a_1 a_2}{(1 - a_1^2)(1 - a_2^2)} \\ -\frac{a_2 a_1}{(1 - a_2^2)(1 - a_1^2)} & \frac{(1 - a_1^2)(1 - a_2^2)}{\alpha^2(1 - a_2^2) - a_2^2} \end{bmatrix} \]

\[= \frac{1}{\alpha^2} \begin{bmatrix} \frac{\alpha^2}{1 - a_1^2} & -\frac{a_1 a_2}{\alpha^2(1 - a_2^2)} \\ -\frac{a_2 a_1}{(1 - a_2^2)(1 - a_1^2)} & \frac{1 - a_2^2 a_1^2}{\alpha^2(1 - a_2^2) - a_2^2} \end{bmatrix} \]

\[= \frac{1}{\alpha^2} \begin{bmatrix} \frac{\alpha^2}{1 - a_1^2} & -\frac{a_1 a_2}{\alpha^2 a_1^2} \\ -\frac{a_2 a_1}{(1 - a_2^2)(1 - a_1^2)} & \frac{1 - a_2^2 a_1^2}{\alpha^2 a_1^2} \end{bmatrix} \]

\[= \frac{(1 - a_1^2)(1 - a_2^2)}{1 - a_2^2 a_1^2} \begin{bmatrix} \alpha^2 & -\frac{a_1 a_2}{\alpha^2} \\ -\frac{a_2 a_1}{(1 - a_2^2)(1 - a_1^2)} & \frac{1 - a_2^2 a_1^2}{\alpha^2} \end{bmatrix} \]

\[= \frac{1}{\alpha^2} \begin{bmatrix} \frac{\alpha^2}{1 - a_1^2} & -\frac{a_1 a_2}{\alpha^2 a_1^2} \\ -\frac{a_2 a_1}{(1 - a_2^2)(1 - a_1^2)} & \frac{1 - a_2^2 a_1^2}{\alpha^2 a_1^2} \end{bmatrix} \]
In particular, the case \(n = 2 \) is able to recover all two-dimensional copulas by setting the correlation coefficient \(\rho = a_1 a_2 \). In the general case, \(\Sigma \) is parametrized by \(n \) numbers, which offers less degrees of freedom compared with the joint Gaussian copula correlation method which relies on \(n(n - 1)/2 \) coefficients, see also Exercise 6.2.

Exercises

Exercise 6.1 Credit Default Contract. The assets of a company are modeled using a geometric Brownian motion \((S_t)_{t \in \mathbb{R}^+} \) with drift \(r > 0 \) under the risk-neutral probability measure \(\mathbb{P}^* \). A Credit Default Contract pays $1 as soon as the asset \(S_t \) hits a level \(K > 0 \). Price this contract at time \(t > 0 \) assuming that \(S_t > K \).

Exercise 6.2

a) Check that the vector \((X_1, X_2, \ldots, X_n) \) defined in (6.6) has the covariance matrix given by (6.8).

b) Show that the vector \((X_1, X_2, \ldots, X_n) \), with covariance matrix (6.8) has standard Gaussian marginals.

c) By computing explicitly the probability density function of \((X_1, \ldots, X_n) \), recover the fact that it is a jointly Gaussian random vector with covariance matrix (6.8).