Chapter 6
Martingale Approach to Pricing and Hedging

In this chapter we present the probabilistic *martingale approach* method to the pricing and hedging of options. In particular, this allows one to compute option prices as the expectations of the discounted option payoffs, and to determine the associated hedging portfolios.

6.1 Martingale Property of the Itô Integral

Recall (Definition 5.5) that an integrable process \((X_t)_{t \in \mathbb{R}^+}\) is said to be a *martingale* with respect to the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}^+}\), if

\[
\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s, \quad 0 \leq s \leq t.
\]

Examples of martingales (i)

1. Given \(F \in L^2(\Omega)\) a square-integrable random variable and \((\mathcal{F}_t)_{t \in \mathbb{R}^+}\) a filtration, the process \((X_t)_{t \in \mathbb{R}^+}\) defined by \(X_t := \mathbb{E}[F \mid \mathcal{F}_t]\) is an \((\mathcal{F}_t)_{t \in \mathbb{R}^+}\)-martingale under \(\mathbb{P}\), as follows from the tower property:

\[
\mathbb{E}[X_t \mid \mathcal{F}_s] = \mathbb{E}[\mathbb{E}[F \mid \mathcal{F}_t] \mid \mathcal{F}_s] = \mathbb{E}[F \mid \mathcal{F}_s] = X_s, \quad 0 \leq s \leq t, \quad (6.1)
\]

by the tower property (18.38).
2. Any integrable stochastic process \((X_t)_{t \in \mathbb{R}_+}\) whose increments \((X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}})\) are independent and centered under \(\mathbb{P}\) (i.e., \(\mathbb{E}[X_t] = 0, t \in \mathbb{R}_+\)) is a martingale with respect to its own filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\):

\[
\mathbb{E}[X_t \mid \mathcal{F}_s] = \mathbb{E}[X_t - X_s + X_s \mid \mathcal{F}_s] = \mathbb{E}[X_t - X_s] + \mathbb{E}[X_s \mid \mathcal{F}_s] = X_s, \quad 0 \leq s \leq t.
\] (6.2)

In particular, the standard Brownian motion \((B_t)_{t \in \mathbb{R}_+}\) is a martingale because it has centered and independent increments. This fact is also consequence of Proposition 6.1 below as \(B_t\) can be written as

\[
B_t = \int_0^t dB_s, \quad t \in \mathbb{R}_+.
\]

The following result shows that the indefinite Itô integral is a martingale with respect to the Brownian filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\). It is the continuous-time analog of the discrete-time Proposition 2.7.

Proposition 6.1. The indefinite stochastic integral \(\left(\int_0^t u_s dB_s\right)_{t \in \mathbb{R}_+}\) of a square-integrable adapted process \(u \in L^2_{ad}(\Omega \times \mathbb{R}_+)\) is a martingale, i.e.:

\[
\mathbb{E}\left[\int_0^t u_{\tau} dB_{\tau} \mid \mathcal{F}_s\right] = \int_0^s u_{\tau} dB_{\tau}, \quad 0 \leq s \leq t.
\] (6.3)

In particular, \(\int_0^t u_s dB_s\) is \(\mathcal{F}_t\)-measurable, \(t \in \mathbb{R}_+\), and since \(\mathcal{F}_0 = \{\emptyset, \Omega\}\), Relation (6.3) applied with \(t = 0\) recovers the fact that the Itô integral is a centered random variable:

\[
\mathbb{E}\left[\int_0^\infty u_s dB_s\right] = \mathbb{E}\left[\int_0^\infty u_s dB_s \mid \mathcal{F}_0\right] = \int_0^0 u_s dB_s = 0.
\]

Proof. The statement is first proved in case \(u\) is a simple predictable process, and then extended to the general case, cf. e.g. Proposition 2.5.7 in Privault (2009). For example, for \(u\) a step process of the form

\[
u_s := F1_{[a,b]}(s) = \begin{cases}
F & \text{if } s \in [a,b], \\
0 & \text{if } s \not\in [a,b],
\end{cases}
\]

with \(F\) an \(\mathcal{F}_a\)-measurable random variable and \(t \in [a,b]\), we have

\[
\mathbb{E}\left[\int_0^t u_s dB_s \mid \mathcal{F}_t\right] = \mathbb{E}\left[\int_0^\infty F1_{[a,b]}(s) dB_s \mid \mathcal{F}_t\right] = \mathbb{E}[F(B_b - B_a) \mid \mathcal{F}_t]
\]
Martingale Approach to Pricing and Hedging

\[\begin{align*}
&= F \mathbb{E}[B_b - B_a \mid \mathcal{F}_t] \\
&= F(B_t - B_a) \\
&= \int_a^t u_s dB_s \\
&= \int_a^t u_s dB_s, \quad a \leq t \leq b.
\end{align*}\]

On the other hand, when \(t \in [0, a] \) we have

\[\int_0^t u_s dB_s = 0,\]

hence we check that

\[\begin{align*}
\mathbb{E} \left[\int_0^\infty u_s dB_s \mid \mathcal{F}_t \right] &= \mathbb{E} \left[\int_0^\infty F\mathbb{1}_{[a,b]}(s) dB_s \mid \mathcal{F}_t \right] \\
&= \mathbb{E}[F(B_b - B_a) \mid \mathcal{F}_t] \\
&= \mathbb{E}[\mathbb{E}[F(B_b - B_a) \mid \mathcal{F}_a] \mid \mathcal{F}_t] \\
&= \mathbb{E}[F \mathbb{E}[B_b - B_a \mid \mathcal{F}_a] \mid \mathcal{F}_t] \\
&= 0, \quad 0 \leq t \leq a,
\end{align*}\]

where we used the tower property (18.38) of conditional expectations and the fact that \((B_t)_{t \in \mathbb{R}_+}\) is a martingale:

\[\mathbb{E}[B_b - B_a \mid \mathcal{F}_a] = \mathbb{E}[B_b \mid \mathcal{F}_a] - B_a = B_b - B_a = 0.\]

The extension from simple processes to square-integrable processes in \(L^2_{\text{ad}}(\Omega \times \mathbb{R}_+)\) can be proved as in Proposition 4.9. Indeed, given \((u^n)_{n \in \mathbb{N}}\) be a sequence of simple predictable processes converging to \(u\) in \(L^2(\Omega \times [0, T])\) cf. Lemma 1.1 of Ikeda and Watanabe (1989), pages 22 and 46, by Fatou’s Lemma 18.1 and Jensen’s inequality we have:

\[\begin{align*}
\mathbb{E} \left[\left(\int_0^t u_s dB_s - \mathbb{E} \left[\int_0^\infty u_s dB_s \mid \mathcal{F}_t \right] \right)^2 \right] \\
&\leq \liminf_{n \to \infty} \mathbb{E} \left[\left(\int_0^t u_s^{(n)} dB_s - \mathbb{E} \left[\int_0^\infty u_s dB_s \mid \mathcal{F}_t \right] \right)^2 \right] \\
&= \liminf_{n \to \infty} \mathbb{E} \left[\left(\mathbb{E} \left[\int_0^\infty u_s^{(n)} dB_s - \int_0^\infty u_s dB_s \mid \mathcal{F}_t \right] \right)^2 \right] \\
&\leq \liminf_{n \to \infty} \mathbb{E} \left[\mathbb{E} \left[\left(\int_0^\infty u_s^{(n)} dB_s - \int_0^\infty u_s dB_s \right)^2 \mid \mathcal{F}_t \right] \right] \\
&= \liminf_{n \to \infty} \mathbb{E} \left[\left(\int_0^\infty (u_s^{(n)} - u_s) dB_s \right)^2 \right] \\
&= \liminf_{n \to \infty} \mathbb{E} \left[\int_0^\infty |u_s^{(n)} - u_s|^2 ds \right]
\end{align*}\]
= 0,
where we used the Itô isometry (4.15). We conclude that

\[
\mathbb{E} \left[\int_0^\infty u_s dB_s \mid \mathcal{F}_t \right] = \int_0^t u_s dB_s, \quad t \in \mathbb{R}_+,
\]

for \(u \in L^2_{ad}(\Omega \times \mathbb{R}_+) \) a square-integrable adapted process, which leads to (6.3) after applying this identity to the process \((\mathbb{1}_{[0,t]}u_s)_{s \in \mathbb{R}_+}\), i.e.,

\[
\mathbb{E} \left[\int_0^t u_\tau dB_\tau \mid \mathcal{F}_s \right] = \mathbb{E} \left[\int_0^\infty \mathbb{1}_{[0,t]}(\tau) u_\tau dB_\tau \mid \mathcal{F}_s \right] = \int_0^s \mathbb{1}_{[0,t]}(\tau) u_\tau dB_\tau = \int_0^s u_\tau dB_\tau, \quad 0 \leq s \leq t.
\]

□

Examples of martingales (ii)

1. The driftless geometric Brownian motion

\[
X_t := X_0 e^{\sigma B_t - \sigma^2 t/2}
\]
is a martingale. Indeed, we have

\[
\mathbb{E}[X_t \mid \mathcal{F}_s] = \mathbb{E}[X_0 e^{\sigma B_t - \sigma^2 t/2} \mid \mathcal{F}_s] = X_0 e^{-\sigma^2 t/2} \mathbb{E}[e^{\sigma B_t} \mid \mathcal{F}_s] = X_0 e^{-\sigma^2 t/2} \mathbb{E}[e^{\sigma(B_t-B_s)+\sigma B_s} \mid \mathcal{F}_s] = X_0 e^{-\sigma^2 t/2+\sigma B_s} \mathbb{E}[e^{\sigma(B_t-B_s)} \mid \mathcal{F}_s] = X_0 e^{-\sigma^2 t/2+\sigma B_s} e^{\sigma^2(t-s)/2} = X_0 e^{\sigma B_s - \sigma^2 s/2} = X_s, \quad 0 \leq s \leq t.
\]

This fact can also be recovered from Proposition 6.1 since \((X_t)_{t \in \mathbb{R}_+}\) satisfies the equation

\[
dX_t = \sigma X_t dB_t,
\]

which shows that \(X_t\) can be written using the Brownian stochastic integral

\[
X_t = X_0 + \sigma \int_0^t X_u dB_u, \quad t \in \mathbb{R}_+.
\]

\(\Box\)
The discounted asset price
\[\tilde{S}_t = S_0 e^{(\mu - r)t + \sigma B_t - \sigma^2 t/2} \]
is a martingale under \(\mathbb{P} \) when \(\mu = r \). The case \(\mu \neq r \) will be treated in Section 6.3 using risk-neutral probability measures and the Girsanov theorem, cf. (6.12) below.

2. The discounted value
\[\tilde{V}_t = e^{-rt} V_t \]
of a self-financing portfolio is given by
\[\tilde{V}_t = \tilde{V}_0 + \int_0^t \xi_u d\tilde{S}_u, \quad t \in \mathbb{R}_+, \]
cf. Lemma 5.2 is a martingale when \(\mu = r \) by Proposition 6.1 because
\[\tilde{V}_t = \tilde{V}_0 + \sigma \int_0^t \xi_u \tilde{S}_u dB_u, \quad t \in \mathbb{R}_+, \]
since
\[d\tilde{S}_t = \tilde{S}_t((\mu - r)dt + \sigma dB_t) = \sigma \tilde{S}_t dB_t. \]
Since the Black-Scholes theory is in fact valid for any value of the parameter \(\mu \) we will look forward to including the case \(\mu \neq r \) in the sequel.

6.2 Risk-neutral Probability Measures

Recall that by definition, a risk-neutral measure is a probability measure \(\mathbb{P}^* \) under which the discounted asset price process
\[\tilde{S}_t \]
is a martingale, cf. Proposition 5.6. Note that when \(\mu = r \), the process \(\tilde{S}_t \) is a martingale under \(\mathbb{P}^* = \mathbb{P} \), which is a risk-neutral probability measure.

In this section we address the construction of a risk-neutral probability measure \(\mathbb{P}^* \) in the general case \(\mu \neq r \) using the Girsanov theorem. Note that the relation
\[d\tilde{S}_t = \tilde{S}_t((\mu - r)dt + \sigma dB_t) \]
where \(\mu - r \) is the risk premium, can be rewritten as
\[d\tilde{S}_t = \sigma \tilde{S}_t d\tilde{B}_t, \]
where \(\tilde{B}_t \) is a drifted Brownian motion given by
\[\tilde{B}_t := \frac{\mu - r}{\sigma} t + B_t, \quad t \in \mathbb{R}_+, \]

where the drift coefficient \((\mu - r)/\sigma\) is the “Market Price of Risk” (MPoR). It represents the difference between the return \(\mu\) expected when investing in the risky asset \(S_t\), and the risk-free rate \(r\), measured in units of volatility \(\sigma\).

Therefore, the search for a risk-neutral probability measure can be replaced by the search for a probability measure \(\mathbb{P}^*\) under which \((\tilde{B}_t)_{t \in \mathbb{R}_+}\) is a standard Brownian motion.

Let us come back to the informal interpretation of Brownian motion via its infinitesimal increments:

\[\Delta B_t = \pm \sqrt{\Delta t}, \]

with

\[\mathbb{P}(\Delta B_t = +\sqrt{\Delta t}) = \mathbb{P}(\Delta B_t = -\sqrt{\Delta t}) = \frac{1}{2}. \]

Figure 6.1: Drifted Brownian path.

Clearly, given \(\nu \in \mathbb{R}\), the drifted process \(\tilde{B}_t := \nu t + B_t\) is no longer a standard Brownian motion because it is not centered:

\[\mathbb{E}[\nu t + B_t] = \nu t + \mathbb{E}[B_t] = \nu t \neq 0, \]

cf. Figure 6.1. This identity can be formulated in terms of infinitesimal increments as

\[\mathbb{E}[\nu \Delta t + \Delta B_t] = \frac{1}{2}(\nu \Delta t + \sqrt{\Delta t}) + \frac{1}{2}(\nu \Delta t - \sqrt{\Delta t}) = \nu \Delta t \neq 0. \]

In order to make \(\nu t + B_t\) a centered process (i.e. a standard Brownian motion, since \(\nu t + B_t\) conserves all the other properties \((i)-(iii)\) in the definition of Brownian motion, one may change the probabilities of ups and downs, which have been fixed so far equal to 1/2.
That is, the problem is now to find two numbers \(p^*, q^* \in [0, 1] \) such that

\[
\begin{align*}
\begin{cases}
p^*(\nu \Delta t + \sqrt{\Delta t}) + q^*(\nu \Delta t - \sqrt{\Delta t}) = 0 \\
p^* + q^* = 1
\end{cases}
\end{align*}
\]

The solution to this problem is given by

\[
p^* = \frac{1}{2}(1 - \nu \sqrt{\Delta t}) \quad \text{and} \quad q^* = \frac{1}{2}(1 + \nu \sqrt{\Delta t}).
\]

Coming back to Brownian motion considered as a discrete random walk with independent increments \(\pm \sqrt{\Delta t} \), we try to construct a new probability measure denoted \(P^* \), under which the drifted process \(\tilde{B}_t := \nu t + B_t \) will be a standard Brownian motion. This probability measure will be defined through its density

\[
dP^* \triangleright dP = \begin{cases}
P^*(\Delta B_{t_1} = \epsilon_1 \sqrt{\Delta t}, \ldots, \Delta B_{t_N} = \epsilon_N \sqrt{\Delta t}) \\
P(\Delta B_{t_1} = \epsilon_1 \sqrt{\Delta t}, \ldots, \Delta B_{t_N} = \epsilon_N \sqrt{\Delta t})
\end{cases}
\]

\[
= \frac{1}{(1/2)^N} P^*(\Delta B_{t_1} = \epsilon_1 \sqrt{\Delta t}) \cdots P^*(\Delta B_{t_N} = \epsilon_N \sqrt{\Delta t}),
\]

\(\epsilon_1, \epsilon_2, \ldots, \epsilon_N \in \{-1, 1\} \), with respect to the historical probability measure \(P \), obtained by taking the product of the above probabilities divided by the reference probability \(1/2^N \) corresponding to the symmetric random walk.

Interpreting \(N = T / \Delta t \) as an (infinitely large) number of discrete time steps and under the identification \([0, T] \simeq \{0 = t_0, t_1, \ldots, t_N = T\} \), this density can be rewritten as

\[
\frac{dP^*}{dP} \simeq \frac{1}{(1/2)^N} \prod_{0 < t < T} \left(\frac{1}{2} \mp \frac{1}{2} \nu \sqrt{\Delta t} \right)
\]

where \(2^N \) becomes a normalization factor. Using the expansion

\[
\log \left(1 \pm \nu \sqrt{\Delta t} \right) = \pm \nu \sqrt{\Delta t} - \frac{1}{2} (\pm \nu \sqrt{\Delta t})^2 + o(\Delta t)
\]

\[
= \pm \nu \sqrt{\Delta t} - \frac{1}{2} (\nu \sqrt{\Delta t})^2 + o(\Delta t),
\]

for small values of \(\Delta t \), this density can be informally shown to converge as follows as \(N \) tends to infinity, \(i.e. \) as the time step \(\Delta t = T / N \) tends to zero:
\[2^N \prod_{0 < t < T} \left(\frac{1}{2} \pm \frac{1}{2} \nu \sqrt{\Delta t} \right) = \prod_{0 < t < T} \left(1 \mp \nu \sqrt{\Delta t} \right) \]

\[= \exp \left(\log \prod_{0 < t < T} \left(1 \mp \nu \sqrt{\Delta t} \right) \right) \]

\[= \exp \left(\sum_{0 < t < T} \log \left(1 \mp \nu \sqrt{\Delta t} \right) \right) \]

\[\simeq \exp \left(\nu \sum_{0 < t < T} \mp \sqrt{\Delta t} - \frac{1}{2} \sum_{0 < t < T} (\mp \nu \sqrt{\Delta t})^2 \right) \]

\[= \exp \left(-\nu \sum_{0 < t < T} \pm \sqrt{\Delta t} - \frac{\nu^2}{2} \sum_{0 < t < T} \Delta t \right) \]

\[= \exp \left(-\nu \sum_{0 < t < T} \Delta B_t - \frac{\nu^2}{2} \sum_{0 < t < T} \Delta t \right) \]

\[= \exp \left(-\nu B_T - \frac{\nu^2}{2} T \right), \]

based on the identifications

\[B_T \simeq \sum_{0 < t < T} \pm \sqrt{\Delta t} \quad \text{and} \quad T \simeq \sum_{0 < t < T} \Delta t. \]

The following R code is rescaling probabilities as in (6.4) based on the value of the drift \(\mu \).

```
N=1000; t <- 0:N; dt <- 1.0/N; nu=3; p=0.5*(1-nu*(dt)^0.5); nsim <- 10
X <- matrix((dt)^0.5*(rbinom( nsim * N, 1, p)-0.5)*2, nsim, N)
X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum))
plot(t, X[1, ], xlab = "time", type = "l", ylim = c(-2*N*dt, 2*N*dt), col = 0)
for (i in 1:nsim){lines(t,t*nu*dt+X[i,],xlab="time",type="l",ylim=c(-2*N*dt,2*N*dt),col=i)}
```

The discretized illustration in Figure 6.2 displays the drifted Brownian motion \(\tilde{B}_t := \nu t + B_t \) under the shifted probability measure \(P^* \) in (6.5) using the above R code for \(N = 100 \), by making big transitions less frequent than small transitions.
6.3 Change of Measure and the Girsanov Theorem

In this section we restate the Girsanov theorem in a more rigorous way, using changes of probability measures. Recall that, given Q a probability measure on Ω, the notation

\[
\frac{dQ}{dP} = F, \quad \text{i.e.} \quad dQ = F dP,
\]

(6.6)

means that the probability measure Q has a density F with respect to P, where $F : \Omega \rightarrow \mathbb{R}$ is a nonnegative random variable such that $\mathbb{E}[F] = 1$.

Relation (6.6) is equivalent to stating that

\[
\mathbb{E}_Q[G] = \int_{\Omega} G(\omega) dQ(\omega) = \int_{\Omega} G(\omega) F(\omega) dP(\omega) = \mathbb{E}[FG],
\]

where G is an integrable random variable. In addition we say that Q is equivalent to P when $F > 0$ with P-probability one.

Recall that here, $\Omega = C_0([0,T])$ is the Wiener space and $\omega \in \Omega$ is a continuous function on $[0,T]$ starting at 0 in $t = 0$. Consider the probability Q defined by

\[
dQ(\omega) = \exp \left(-\nu B_T - \frac{\nu^2}{2} T \right) dP(\omega).
\]

Then the process $\nu t + B_t$ is a standard (centered) Brownian motion under Q.

For example, the fact that $\nu T + B_T$ has a standard (centered) Gaussian distribution under Q can be recovered as follows:

\[
\mathbb{E}_Q[f(\nu T + B_T)] = \int_{\Omega} f(\nu T + B_T) dQ
\]
\[N. \text{Privault} \]

\[f(\nu T + B_T) \exp \left(-\nu B_T - \frac{1}{2} \nu^2 T \right) d\mathbb{P} = \int_{-\infty}^{\infty} f(\nu T + x) \exp \left(-\nu x - \frac{1}{2} \nu^2 T \right) e^{-x^2/(2T)} \frac{dx}{\sqrt{2\pi T}} = \int_{-\infty}^{\infty} f(\nu T + x) e^{-(\nu T + x)^2/(2T)} \frac{dx}{\sqrt{2\pi T}} = \int_{-\infty}^{\infty} f(y) e^{-y^2/(2T)} \frac{dy}{\sqrt{2\pi T}}, \]

i.e.

\[\mathbb{E}_Q[f(\nu T + B_T)] = \int_{\Omega} f(\nu T + B_T) dQ = \int_{\Omega} f(B_T) d\mathbb{P} = \mathbb{E}_P[f(B_T)]. \] (6.7)

The Girsanov theorem can actually be extended to shifts by adapted processes \((\psi_t)_{t \in [0,T]}\) as follows, cf. e.g. Theorem III-42, page 141 of Protter (2004). Section 15.6 will cover the extension of the Girsanov theorem to jump processes.

Theorem 6.2. Let \((\psi_t)_{t \in [0,T]}\) be an adapted process satisfying the Novikov integrability condition

\[\mathbb{E} \left[\exp \left(\frac{1}{2} \int_0^T |\psi_t|^2 dt \right) \right] < \infty, \] (6.8)

and let \(Q\) denote the probability measure defined by

\[\frac{dQ}{d\mathbb{P}} = \exp \left(- \int_0^T \psi_s dB_s - \frac{1}{2} \int_0^T |\psi_s|^2 ds \right). \]

Then

\[\tilde{B}_t := B_t + \int_0^t \psi_s ds, \quad 0 \leq t \leq T, \]

is a standard Brownian motion under \(Q\).

The Girsanov Theorem allows us to extend (6.7) as

\[\mathbb{E}[F] = \mathbb{E} \left[F(B_t + \int_0^T \psi_s ds) \exp \left(- \int_0^T \psi_s dB_s - \frac{1}{2} \int_0^T |\psi_s|^2 ds \right) \right], \] (6.9)

for all random variables \(F \in L^1(\Omega)\), see also Exercise 6.16.

When applied to the (constant) market price of risk (or Sharpe ratio)

\[\psi_t := \frac{\mu - r}{\sigma}, \]

the Girsanov theorem shows that

210
Martingale Approach to Pricing and Hedging

\[\tilde{B}_t := \frac{\mu - r}{\sigma} t + B_t, \quad 0 \leq t \leq T, \quad (6.10) \]

is a standard Brownian motion under the probability measure \(\mathbb{P}^* \) defined by

\[\frac{d\mathbb{P}^*}{d\mathbb{P}} = \exp \left(-\frac{\mu - r}{\sigma} B_T - \frac{(\mu - r)^2}{2\sigma^2} T \right). \quad (6.11) \]

Hence by Proposition 6.1 the discounted price process \(\tilde{S}_t \) solution of

\[d\tilde{S}_t = (\mu - r)\tilde{S}_t dt + \sigma \tilde{S}_t dB_t = \sigma \tilde{S}_t d\tilde{B}_t, \quad t \in \mathbb{R}_+, \quad (6.12) \]

is a martingale under \(\mathbb{P}^* \), hence \(\mathbb{P}^* \) is a risk-neutral probability measure, and we obviously have \(\mathbb{P} = \mathbb{P}^* \) when \(\mu = r \).

6.4 Pricing by the Martingale Method

In this section we give the expression of the Black-Scholes price using expectations of discounted payoffs.

Recall that from the first fundamental theorem of mathematical finance, a continuous market is without arbitrage opportunities if there exists (at least) a risk-neutral probability measure \(\mathbb{P}^* \) under which the discounted price process

\[\tilde{S}_t := e^{-rt} S_t, \quad t \in \mathbb{R}_+, \]

is a martingale under \(\mathbb{P}^* \). In addition, when the risk-neutral probability measure is unique, the market is said to be complete.

In case the price process \((S_t)_{t \in \mathbb{R}_+} \) satisfies the equation

\[\frac{dS_t}{S_t} = \mu dt + \sigma dB_t, \quad t \in \mathbb{R}_+, \quad S_0 > 0 \]

we have

\[S_t = S_0 e^{\mu t + \sigma B_t - \sigma^2 t / 2}, \quad t \in \mathbb{R}_+, \]

and from Section 6.2 the discounted price process

\[\tilde{S}_t := e^{-rt} S_t = S_0 e^{(\mu - r)t + \sigma B_t - \sigma^2 t / 2}, \quad t \in \mathbb{R}_+, \]

is a martingale under the probability measure \(\mathbb{P}^* \) defined by (6.11), i.e. \(\mathbb{P}^* \) is a risk-neutral probability measure, also called martingale measure.

Moreover, we have

\[d\tilde{S}_t = (\mu - r)\tilde{S}_t dt + \sigma \tilde{S}_t dB_t \]
N. Privault

\[\frac{\rho - r}{\sigma} dt + dB_t \]

\[\sigma S_t dB_t, \quad t \in \mathbb{R}_+ \tag{6.13} \]

hence by Lemma 5.2 the discounted value \(\tilde{V}_t \) of a self-financing portfolio can be written as

\[\tilde{V}_t = \tilde{V}_0 + \int_0^t \xi_u dS_u = V_0 + \int_0^t \xi_u \tilde{S}_u dB_u, \quad t \in \mathbb{R}_+, \]

and by Proposition 6.1 it becomes a martingale under \(P^* \).

As in Chapter 3, the value \(V_t \) at time \(t \) of a self-financing portfolio strategy \((\xi_t, \eta_t)_{t \in [0,T]} \) hedging an attainable claim \(C \) will be called an arbitrage price of the claim \(C \) at time \(t \) and denoted by \(\pi_t(C), \ t \in [0,T] \). Recall that arbitrage prices can be used to ensure that financial derivatives are “marked” at their fair value (mark to market).

Theorem 6.3. Let \((\xi_t, \eta_t)_{t \in [0,T]} \) be a portfolio strategy with price

\[V_t = \eta_t A_t + \xi_t S_t, \quad t \in [0,T], \]

and let \(C \) be a contingent claim, such that

(i) \((\xi_t, \eta_t)_{t \in [0,T]} \) is a self-financing portfolio, and

(ii) \((\xi_t, \eta_t)_{t \in [0,T]} \) hedges the claim \(C \), i.e. we have \(V_T = C \).

Then the arbitrage price of the claim \(C \) is given by

\[\pi_t(C) = V_t = e^{-(T-t)r} E^*[C | \mathcal{F}_t], \quad 0 \leq t \leq T, \tag{6.14} \]

where \(E^* \) denotes expectation under the risk-neutral probability measure \(P^* \).

Proof. Since the portfolio strategy \((\xi_t, \eta_t)_{t \in \mathbb{R}_+} \) is self-financing, by Lemma 5.2 and (6.13) we have

\[\tilde{V}_t = \tilde{V}_0 + \sigma \int_0^t \xi_u \tilde{S}_u dB_u = V_0 + \int_0^t \xi_u d\tilde{S}_u, \quad t \in \mathbb{R}_+, \]

which is a martingale under \(P^* \) from Proposition 6.1, hence

\[\tilde{V}_t = E^* \left[\tilde{V}_T | \mathcal{F}_t \right] = e^{-rT} E^*[V_T | \mathcal{F}_t] = e^{-rT} E^*[C | \mathcal{F}_t], \]

which implies

212

This version: March 18, 2019

http://www.ntu.edu.sg/home/nprivault/index.html
Martingale Approach to Pricing and Hedging

\[V_t = e^{rt} \tilde{V}_t = e^{-(T-t)r} \mathbb{E}^*[C \mid \mathcal{F}_t], \quad 0 \leq t \leq T. \]

\[\square \]

Vanilla options

When the process \((S_t)_{t \in \mathbb{R}_+}\) has the Markov property, the value

\[V_t = e^{-(T-t)r} \mathbb{E}^*[\phi(S_T) \mid \mathcal{F}_t] = e^{-(T-t)r} \mathbb{E}^*[\phi(S_T) \mid S_t], \quad 0 \leq t \leq T, \]

of the portfolio at time \(t \in [0, T]\) can be written from (6.14) as a function

\[V_t = C(t, S_t) = e^{-(T-t)r} \mathbb{E}^*[\phi(S_T) \mid S_t] \]

of \(t\) and \(S_t\), \(0 \leq t \leq T\). In particular, when \(S_t = S_0 e^{\sigma B_t + (r-\sigma^2)t/2}, t \in \mathbb{R}_+, \) is a geometric Brownian motion and \(\phi\) is a Lipschitz function, it can be checked by integrations by parts that the function \(C(t, x)\) defined by

\[C(t, S_t) = e^{-(T-t)r} \mathbb{E}^*[\phi(S_T) \mid S_t] = e^{-(T-t)r} \mathbb{E}^*[\phi(xS_T/S_t)]_{x=S_t}, \]

\(0 \leq t \leq T, \) is in \(C^{1,2}(\mathbb{R}_+ \times \mathbb{R}_+)\) from the properties of the lognormal distribution of \(S_T\), and by Proposition 5.12 the function \(C(t, x)\) solves the Black-Scholes PDE

\[\begin{cases} rC(t, x) = \frac{\partial C}{\partial t}(t, x) + rx \frac{\partial C}{\partial x}(t, x) + \frac{1}{2} x^2 \sigma^2 \frac{\partial^2 C}{\partial x^2}(t, x) \\ C(T, x) = \phi(x), \quad x > 0. \end{cases} \]

In the case of European options with payoff function \(\phi(x) = (x - K)^+\) we recover the Black-Scholes formula (5.18), cf. Proposition 5.17, by a probabilistic argument.

Proposition 6.4. The price at time \(t\) of a European call option with strike price \(K\) and maturity \(T\) is given by

\[C(t, S_t) = S_t \Phi(d_+(T-t)) - K e^{-(T-t)r} \Phi(d_-(T-t)), \quad 0 \leq t \leq T, \] (6.15)

with

\[\begin{aligned} d_+(T-t) &:= \frac{\log(x/K) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}}, \\ d_-(T-t) &:= \frac{\log(x/K) + (r - \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}}. \end{aligned} \]
Proof. The proof of Proposition 6.4 is a consequence of (6.14) and Lemma 6.5 below. Using the relation

\[S_T = S_t e^{(T-t)r + \sigma (\hat{B}_T - \hat{B}_t) - \sigma^2 (T-t)/2}, \quad 0 \leq t \leq T, \]

by Theorem 6.3 the price of the portfolio hedging \(C \) is given by

\[V_t = e^{-(T-t)r} \mathbb{E}^*[C \mid \mathcal{F}_t] \]

\[= e^{-(T-t)r} \mathbb{E}^*[(S_T - K)^+ \mid \mathcal{F}_t] \]

\[= e^{-(T-t)r} \mathbb{E}^*[(S_t e^{(T-t)r + \sigma (\hat{B}_T - \hat{B}_t) - \sigma^2 (T-t)/2} - K)^+ \mid \mathcal{F}_t] \]

\[= e^{-(T-t)r} \mathbb{E}^*[(x e^{(T-t)r + \sigma (\hat{B}_T - \hat{B}_t) - \sigma^2 (T-t)/2} - K)^+]_{x=S_t} \]

\[= e^{-(T-t)r} \mathbb{E}^*[(e^{m(x)} + X)^+]_{x=S_t}, \quad 0 \leq t \leq T, \]

where

\[m(x) := (T-t)r - \frac{\sigma^2}{2} (T-t) + \log x \]

and

\[X := \sigma (\hat{B}_T - \hat{B}_t) \sim \mathcal{N}(0, \sigma^2 (T-t)) \]

is a centered Gaussian random variable with variance

\[\text{Var}[X] = \text{Var}[\sigma (\hat{B}_T - \hat{B}_t)] = \sigma^2 \text{Var}[\hat{B}_T - \hat{B}_t] = \sigma^2 (T-t) \]

under \(\mathbb{P}^* \). Hence by Lemma 6.5 below we have

\[C(t, S_t) = V_t \]

\[= e^{-(T-t)r} \mathbb{E}^*[(e^{m(x)} + X - K)^+]_{x=S_t} \]

\[= e^{-(T-t)r} e^{m(S_t)+\sigma^2(T-t)/2} \Phi \left(v + \frac{m(S_t) - \log K}{v} \right) \]

\[- K e^{-(T-t)r} \Phi \left(\frac{m(S_t) - \log K}{v} \right) \]

\[= S_t \Phi \left(v + \frac{m(S_t) - \log K}{v} \right) - K e^{-(T-t)r} \Phi \left(\frac{m(S_t) - \log K}{v} \right) \]

\[= S_t \Phi (d_+(T-t)) - K e^{-(T-t)r} \Phi (d_-(T-t)), \]

\[0 \leq t \leq T. \]

Relation (6.15) can also be written as

\[e^{-(T-t)r} \mathbb{E}^*[(S_T - K)^+ \mid \mathcal{F}_t] = e^{-(T-t)r} \mathbb{E}^*[(S_T - K)^+ \mid S_t] \]

\[= S_t \Phi \left(\frac{\log(x/K) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \right) \]

This version: March 18, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
\[-K e^{-(T-t)r} \Phi \left(\frac{\log(x/K) + (r - \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \right), \quad 0 \leq t \leq T. \]

Lemma 6.5. Let \(X \) be a centered Gaussian random variable with variance \(\nu^2 > 0 \). We have

\[
\mathbb{E} \left[(e^{m+X} - K)^+ \right] = e^{m+\nu^2/2} \Phi(v + (m - \log K)/\nu) - K \Phi((m - \log K)/\nu).
\]

Proof. We have

\[
\mathbb{E} \left[(e^{m+X} - K)^+ \right] = \frac{1}{\sqrt{2\pi \nu^2}} \int_{-\infty}^{\infty} (e^{m+x} - K) e^{-x^2/(2\nu^2)} dx
\]

\[
= \frac{e^m}{\sqrt{2\pi \nu^2}} \int_{-\infty}^{\infty} e^{x^2/(2\nu^2)} dx - \frac{K}{\sqrt{2\pi}} \int_{-m+\log K}^{\infty} e^{-x^2/(2\nu^2)} dx
\]

\[
= \frac{e^{m+\nu^2/2}}{\sqrt{2\pi \nu^2}} \int_{-\infty}^{\infty} e^{-(\nu^2-x^2)/(2\nu^2)} dx - \frac{K}{\sqrt{2\pi}} \int_{-m+\log K}^{\infty} e^{-x^2/2} dx
\]

\[
= \frac{e^{m+\nu^2/2}}{\sqrt{2\pi \nu^2}} \int_{-\infty}^{\infty} e^{-x^2/(2\nu^2)} dx - K \Phi((m - \log K)/\nu)
\]

\[
= e^{m+\nu^2/2} \Phi(v + (m - \log K)/\nu) - K \Phi((m - \log K)/\nu).
\]

\(\square \)

Call-put parity

Let

\[
P(t, S_t) := e^{-(T-t)r} \mathbb{E}^*[(K - S_T)^+ \mid \mathcal{F}_t]
\]

denote the price of the put option with strike price \(K \) and maturity \(T \).

Proposition 6.6. We have the relation

\[
C(t, S_t) - P(t, S_t) = S_t - e^{-(T-t)r} K. \quad (6.17)
\]

Proof. From Theorem 6.3 we have

\[
\begin{align*}
C(t, S_t) - P(t, S_t) & = e^{-(T-t)r} \mathbb{E}^*[(S_T - K)^+ \mid \mathcal{F}_t] - e^{-(T-t)r} \mathbb{E}^*[(K - S_T)^+ \mid \mathcal{F}_t] \\
& = e^{-(T-t)r} \mathbb{E}^*[(S_T - K)^+ - (K - S_T)^+ \mid \mathcal{F}_t] \\
& = e^{-(T-t)r} \mathbb{E}^*[S_T - K \mid \mathcal{F}_t] \\
& = e^{-(T-t)r} \mathbb{E}^*[S_T \mid \mathcal{F}_t] - Ke^{-(T-t)r} \\
& = S_t - e^{-(T-t)r} K,
\end{align*}
\]

\(\blacksquare \)
as \(\mathbb{E}^*[S_T | \mathcal{F}_t] = e^{-(T-t)r}S_t \) under the risk-neutral probability measure \(\mathbb{P}^* \).

Relation (6.17) is called the put-call parity, and it shows that the put option price is given by

\[
P(t, S_t) = C(t, S_t) - S_t + e^{-(T-t)r}K
\]

\[= S_t \Phi(d_+(T-t)) + e^{-(T-t)r}K - S_t - e^{-(T-t)r}K \Phi(d_-(T-t))
\]

\[= -S_t(1 - \Phi(d_+(T-t))) + e^{-(T-t)r}K(1 - \Phi(d_-(T-t)))
\]

\[= -S_t \Phi(-d_+(T-t)) + e^{-(T-t)r}K \Phi(-d_-(T-t)).
\]

6.5 Hedging by the Martingale Method

The martingale method can be used to recover the Black-Scholes PDE of Proposition 5.12 by using the fact that the discounted price \(\tilde{V}_t = e^{-rt}g(t, S_t) \) of a self-financing hedging portfolio is a martingale by Lemma 5.2 and Proposition 6.1, and by noting that from e.g. Corollary II-1, page 72 of Protter (2004), all terms in \(dt \) should vanish in the expression of

\[
d(e^{-rt}g(t, S_t)) = -r e^{-rt}g(t, S_t)dt + e^{-rt} dg(t, S_t)
\]

as in the proof of e.g. Proposition 5.12.

Hedging exotic options

In the next Proposition 6.7 we compute a self-financing hedging strategy leading to an arbitrary square-integrable random claim payoff \(C \) admitting a stochastic integral representation formula of the form

\[
C = \mathbb{E}^*[C] + \int_0^T \zeta_t \tilde{B}_t, \tag{6.18}
\]

where \((\zeta_t)_{t \in [0,t]}\) is a square-integrable adapted process. Consequently, the mathematical problem of finding the stochastic integral decomposition (6.18) of a given random variable has important applications in finance. Simple examples of stochastic integral decompositions include the relations

\[
B_T^2 = T + 2 \int_0^T B_t dB_t,
\]

and

\[
B_T^3 = 3 \int_0^T (T-t + B_t^2) dB_t,
\]

cf. Exercise 4.5.
In the sequel, recall that the risky asset follows the equation
\[
\frac{dS_t}{S_t} = \mu dt + \sigma dB_t, \quad t \in \mathbb{R}_+, \quad S_0 > 0,
\]
and as a consequence, the discounted asset price satisfies
\[
d\tilde{S}_t = \sigma \tilde{S}_t d\tilde{B}_t, \quad t \in \mathbb{R}_+, \quad \tilde{S}_0 = S_0 > 0,
\]
where \((\tilde{B}_t)_{t \in \mathbb{R}_+}\) is a standard Brownian motion under the risk-neutral probability measure \(\mathbb{P}^*\).

The following proposition applies to arbitrary square-integrable payoff functions, in particular it covers exotic and path-dependent options.

Proposition 6.7. Consider a random claim payoff \(C \in L^2(\Omega)\) and the process \((\zeta_t)_{t \in [0,T]}\) given by (6.18), and let
\[
\xi_t = e^{-(T-t)r} \frac{\sigma S_t}{S_t} \zeta_t, \quad \eta_t = e^{-(T-t)r} \mathbb{E}^* \left[C \mid \mathcal{F}_t \right] - \xi_t S_t, \quad 0 \leq t \leq T. \tag{6.20}
\]
Then the portfolio allocation \((\xi_t, \eta_t)_{t \in [0,T]}\) is self-financing, and letting
\[
V_t = \eta_t A_t + \xi_t S_t, \quad 0 \leq t \leq T, \tag{6.22}
\]
we have
\[
V_t = e^{-(T-t)r} \mathbb{E}^*[C \mid \mathcal{F}_t], \quad 0 \leq t \leq T. \tag{6.23}
\]
In particular we have
\[
V_T = C, \tag{6.24}
\]
i.e. the portfolio allocation \((\xi_t, \eta_t)_{t \in [0,T]}\) yields a hedging strategy leading to \(C\), starting from the initial value \(V_0 = e^{-rT} \mathbb{E}^*[C]\).

Proof. Relation (6.23) follows from (6.21) and (6.22), and it implies
\[
V_0 = e^{-rT} \mathbb{E}^*[C] = \eta_0 A_0 + \xi_0 S_0
\]
at \(t = 0\), and (6.24) at \(t = T\). It remains to show that the portfolio strategy \((\xi_t, \eta_t)_{t \in [0,T]}\) is self-financing. By (6.18) and Proposition 6.1 we have
\[
V_t = \eta_t A_t + \xi_t S_t
= e^{-(T-t)r} \mathbb{E}^*[C \mid \mathcal{F}_t]
\]
where we applied (6.19). This shows that the discounted portfolio value \(\tilde{V}_t = e^{-rt}V_t \) satisfies

\[
\tilde{V}_t = V_0 + \int_0^t \xi_u d\tilde{S}_u, \quad 0 \leq t \leq T,
\]

and this implies that \((\xi_t, \eta_t)_{t \in [0,T]}\) is self-financing by Lemma 5.2.

The above proposition shows that there always exists a hedging strategy starting from

\[
V_0 = \mathbb{E}^* \left[e^{-rT} \right].
\]

In addition, since there exists a hedging strategy leading to

\[
\tilde{V}_T = e^{-rT}C,
\]

then \((\tilde{V}_t)_{t \in [0,T]}\) is necessarily a martingale, with

\[
\tilde{V}_t = \mathbb{E}^* \left[\tilde{V}_T \mid \mathcal{F}_t \right] = e^{-rT} \mathbb{E}^* [C \mid \mathcal{F}_t], \quad 0 \leq t \leq T,
\]

and initial value

\[
\tilde{V}_0 = \mathbb{E}^* [\tilde{V}_T] = e^{-rT} \mathbb{E}^* [C].
\]

Hedging vanilla options

In practice, the hedging problem can now be reduced to the computation of the process \((\xi_t)_{t \in [0,T]}\) appearing in (6.18). This computation, called Delta hedging, can be performed by the application of the Itô formula and the Markov property, see e.g. Protter (2001).

Definition 6.8. The Markov semi-group \((P_t)_{0 \leq t \leq T}\) associated to \((S_t)_{t \in [0,T]}\) is the mapping \(P_t\) defined on functions \(f \in C^2_b(\mathbb{R})\) as

\[
P_t f(x) := \mathbb{E}^* [f(S_t) \mid S_0 = x], \quad t \in \mathbb{R}_+.
\]

By the Markov property and time homogeneity of \((S_t)_{t \in [0,T]}\) we also have

218
Proof. \(P_t f(S_u) := \mathbb{E}^* \left[f(S_{t+u}) \mid \mathcal{F}_u \right] = \mathbb{E}^* \left[f(S_{t+u}) \mid S_u \right], \quad t, u \in \mathbb{R}_+, \)
and the semi-group \((P_t)_{0 \leq t \leq T}\) satisfies the composition property
\[P_s P_t = P_{t+s} = P_{s+t}, \quad s, t \in \mathbb{R}_+, \]
as we have, using the Markov property and the tower property (18.38) of conditional expectations as in (6.25),
\[P_s P_t f(x) = \mathbb{E}^* \left[P_t f(S_s) \mid S_0 = x \right] = \mathbb{E}^* \left[\mathbb{E}^* \left[f(S_t) \mid S_0 = y \right]_{y=S_s} \mid S_0 = x \right] = \mathbb{E}^* \left[\mathbb{E}^* \left[f(S_{t+s}) \mid S_s = y \right]_{y=S_s} \mid S_0 = x \right] = \mathbb{E}^* \left[f(S_{t+s}) \mid \mathcal{F}_s \mid S_0 = x \right] = \mathbb{E}^* \left[f(S_{t+s}) \mid \mathcal{F}_s \mid S_0 = x \right] = P_{t+s} f(x), \quad s, t \geq 0. \]
Similarly we can show that the process \((P_{T-t} f(S_t))_{t \in [0,T]}\) is an \(\mathcal{F}_t \)-martingale as in Example (6.1), \textit{i.e.}:
\[\mathbb{E}^* \left[P_{T-t} f(S_t) \mid \mathcal{F}_u \right] = \mathbb{E}^* \left[\mathbb{E}^* \left[f(S_T) \mid \mathcal{F}_t \right] \mid \mathcal{F}_u \right] = \mathbb{E}^* \left[f(S_T) \mid \mathcal{F}_u \right] = P_{T-u} f(S_u), \quad 0 \leq u \leq t \leq T, \quad (6.25) \]
and we have
\[P_{t-u} f(x) = \mathbb{E}^* \left[f(S_t) \mid S_u = x \right] = \mathbb{E}^* \left[f \left(\frac{S_t}{S_u} \right) \right], \quad 0 \leq u \leq t. \quad (6.26) \]
The next lemma allows us to compute the process \((\zeta_t)_{t \in [0,T]}\) in case the payoff \(C \) is of the form \(C = \phi(S_T) \) for some function \(\phi \). In case \(C \in L^2(\Omega) \) is the payoff of an exotic option, the process \((\zeta_t)_{t \in [0,T]}\) can be computed using the Malliavin gradient on the Wiener space, cf. Nunno et al. (2009), Privault (2009).

Lemma 6.9. Let \(\phi \in C^2_b(\mathbb{R}) \). The stochastic integral decomposition
\[\phi(S_T) = \mathbb{E}^* \left[\phi(S_T) \right] + \int_0^T \zeta_t d\tilde{B}_t \quad (6.27) \]
is given by
\[\zeta_t = \sigma S_t \frac{\partial}{\partial x} (P_{T-t} \phi)(S_t), \quad 0 \leq t \leq T. \quad (6.28) \]
Proof. Since \(P_{T-t} \phi \) is in \(C^2(\mathbb{R}) \), we can apply the Itô formula to the process
\[\zeta_t \]
\[t \mapsto P_{T-t} \phi(S_t) = \mathbb{E}^* \left[\phi(S_T) \mid \mathcal{F}_t \right], \]

which is a martingale from the tower property (18.38) of conditional expectations as in (6.25). From the fact that the finite variation term in the Itô formula vanishes when \((P_{T-t} \phi(S_t))_{t \in [0,T]}\) is a martingale, (see e.g. Corollary II-6-1 page 72 of Protter (2004)), we obtain:

\[P_{T-t} \phi(S_t) = P_T \phi(S_0) + \sigma \int_0^t S_u \frac{\partial}{\partial x} (P_{T-u} \phi)(S_u) d\tilde{B}_u, \quad 0 \leq t \leq T, \quad (6.29) \]

with \(P_T \phi(S_0) = \mathbb{E}^* \left[\phi(S_T) \right]\). Letting \(t = T\), we obtain (6.28) by uniqueness of the stochastic integral decomposition (6.27) of \(C = \phi(S_T)\). □

By (6.26) we also have

\[\zeta_t = \sigma S_t \frac{\partial}{\partial x} \mathbb{E}^* \left[\phi(S_T) \mid S_t = x \right]_{x=S_t} \]

\[= \sigma S_t \frac{\partial}{\partial x} \mathbb{E}^* \left[\phi \left(\frac{S_T}{S_t} \right) \right]_{x=S_t}, \quad 0 \leq t \leq T, \]

hence

\[\xi_t = \frac{1}{\sigma S_t} e^{-(T-t)r} \zeta_t \]

\[= e^{-(T-t)r} \frac{\partial}{\partial x} \mathbb{E}^* \left[\phi \left(\frac{S_T}{S_t} \right) \right]_{x=S_t}, \quad 0 \leq t \leq T, \quad (6.30) \]

which recovers the formula (5.14) for the Delta of a vanilla option. As a consequence we have \(\xi_t \geq 0\) and there is no short selling when the payoff function \(\phi\) is nondecreasing.

In the case of European options, the process \(\zeta\) can be computed via the next proposition.

Proposition 6.10. Assume that \(C = (S_T - K)^+\). Then for \(0 \leq t \leq T\) we have

\[\zeta_t = \sigma S_t \mathbb{E}^* \left[\frac{S_T}{S_t} \mathbb{1}_{[K,\infty)} \left(\frac{S_T}{S_t} \right) \right]_{x=S_t}. \quad (6.31) \]

Proof. This result follows from Lemma 6.9 and the relation

\[P_{T-t} f(x) = \mathbb{E}^* \left[f(S^x_{T-t}) \right], \]

after approximation of \(x \mapsto \phi(x) = (x - K)^+\) with \(C^2\) functions. □

By evaluating the expectation (6.31) in Proposition 6.10 we can recover the formula (5.21) in Proposition 5.14 for the Delta of a European call option in the Black-Scholes model. In that sense, the next proposition provides another proof of the result of Proposition 5.14.
Proposition 6.11. The Delta of a European call option with payoff function \(f(x) = (x - K)^+ \) is given by

\[
\xi_t = \Phi(d_+(T - t)) = \Phi \left(\frac{\log(S_t/K) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \right), \quad 0 \leq t \leq T.
\]

Proof. By Propositions 6.7 and 6.10 we have

\[
\xi_t = \frac{1}{\sigma S_t} e^{-(T-t)r} \zeta_t
\]

\[
= e^{-(T-t)r} \mathbb{E}^* \left[\frac{S_T}{S_t} \mathbb{1}_{[K,\infty)}(x) \mathbb{1}_{S_t} \right]_{x=S_t}
\]

\[
= e^{-(T-t)r} \mathbb{E}^* \left[e^{\sigma(\tilde{B}_T - \tilde{B}_t) - \sigma^2(T-t)/2 + (T-t)r} \mathbb{1}_{[K,\infty)}(x) e^{\sigma(\tilde{B}_T T - \tilde{B}_t) - \sigma^2(T-t)/2 + (T-t)r} \right]_{x=S_t}
\]

\[
= \frac{1}{\sqrt{2\pi(T-t)}} \int_{\sigma(T-t)/2 - (T-t)/\sigma + \sigma^{-1} \log(K/S_t)}^{\infty} e^{(y - \sigma(T-t))^2/(2(T-t))} dy
\]

\[
= \frac{1}{\sqrt{2\pi(T-t)}} \int_{-\infty}^{\infty} e^{-(y-\sigma(T-t))^2/(2(T-t))} dy
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy
\]

\[
= \Phi(d_+(T - t)).
\]

Proposition 6.11, combined with Proposition 6.4, shows that the Black-Scholes self-financing hedging strategy is to hold a (possibly fractional) quantity

\[
\xi_t = \Phi(d_+(T - t)) = \Phi \left(\frac{\log(S_t/K) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \right) \geq 0 \quad (6.32)
\]

of the risky asset, and to borrow a quantity

\[
-\eta_t = K e^{-rT} \Phi \left(\frac{\log(S_t/K) + (r - \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \right) \geq 0 \quad (6.33)
\]

of the risk-free (savings) account, cf. also Corollary 12.14 in Chapter 12.
As noted above, the result of Proposition 6.11 recovers (5.22) which is obtained by a direct differentiation of the Black-Scholes function as in (5.14) or (6.30).

Exercises

Exercise 6.1 Given the price process \((S_t)_{t \in \mathbb{R}_+}\) defined as
\[
S_t = S_0 e^{\sigma B_t + (r - \sigma^2/2) t},
\]
t \in \mathbb{R}_+, price the option with payoff function \(\phi(S_T)\) by writing
\[
e^{-rT} \mathbb{E}^* \left[\phi(S_T) \right]
\]
as an integral.

Exercise 6.2 Consider an asset price \((S_t)_{t \in \mathbb{R}_+}\) which is a martingale under the risk-neutral probability measure \(\mathbb{P}^*\) in a market with interest rate \(r = 0\), and let \(\phi(x) = (x - K)^+\) be the (convex) European call payoff function.

Show that, for any two maturities \(T_1 < T_2\) and \(p, q \in [0, 1]\) such that \(p + q = 1\), the price of the average option with payoff \(\phi(pS_{T_1} + qS_{T_2})\) is upper bounded by the price of the European call option with maturity \(T_2\), i.e. show that
\[
\mathbb{E}^* \left[\phi(pS_{T_1} + qS_{T_2}) \right] \leq \mathbb{E}^* \left[\phi(S_{T_2}) \right].
\]

Hint 1: For \(\phi\) a convex function we have \(\phi(px + qy) \leq p\phi(x) + q\phi(y)\) for any \(x, y \in \mathbb{R}\) and \(p, q \in [0, 1]\) such that \(p + q = 1\).

Hint 2: Any convex function \(\phi(S_t)\) of a martingale \(S_t\) is a submartingale.

Exercise 6.3 Consider an underlying asset price process \((S_t)_{t \in \mathbb{R}_+}\).

a) Show that the price at time \(t\) of a European call option with strike price \(K\) and maturity \(T\) is lower bounded by the positive part \((S_t - K e^{-(T-t)r})^+\) of the corresponding forward contract price, i.e.
\[
e^{-(T-t)r} \mathbb{E}^* \left[(S_T - K)^+ \mid \mathcal{F}_t \right] \geq (S_t - K e^{-(T-t)r})^+, \quad 0 \leq t \leq T.
\]

b) Show that the price at time \(t\) of a European put option with strike price \(K\) and maturity \(T\) is lower bounded by \(K e^{-(T-t)r} - S_t\), i.e.
\[
e^{-(T-t)r} \mathbb{E}^* \left[(K - S_T)^+ \mid \mathcal{F}_t \right] \geq (K e^{-(T-t)r} - S_t)^+, \quad 0 \leq t \leq T.
\]

Exercise 6.4 The following two graphs describe the payoff functions \(\phi\) of bull spread and bear spread options with payoff \(\phi(S_N)\) on an underlying asset price \(S_N\) at maturity time \(N\).
Martingale Approach to Pricing and Hedging

Fig. 6.3: Payoff functions of bull spread and bear spread options.

(i) Bull spread payoff.
(ii) Bear spread payoff.

Exercise 6.5 Forward contracts revisited. Consider a risky asset whose price S_t is given by $S_t = S_0 e^{rB_t + rt - \sigma^2t/2}$, $t \in \mathbb{R}^+$, where $(B_t)_{t \in \mathbb{R}^+}$ is a standard Brownian motion. Consider a forward contract with maturity T and payoff $S_T - \kappa$.

a) Compute the price C_t of this claim at any time $t \in [0, T]$.

b) Compute a hedging strategy for the option with payoff $S_T - \kappa$.

Exercise 6.6 Option pricing with dividends (Exercise 5.2 continued). Consider an underlying asset price process $(S_t)_{t \in \mathbb{R}^+}$ paying dividends at the continuous-time rate $\delta > 0$, and modeled as

$$dS_t = (\mu - \delta)S_t dt + \sigma S_t dB_t,$$

where $(B_t)_{t \in \mathbb{R}^+}$ is a standard Brownian motion.

a) Show that as in Lemma 5.2, if $(\eta_t, \xi_t)_{t \in \mathbb{R}^+}$ is a portfolio strategy with value $V_t = \eta_t A_t + \xi_t S_t$, $t \in \mathbb{R}^+$,
where the dividend yield δS_t per share is continuously reinvested in the portfolio, then the discounted portfolio value \tilde{V}_t can be written as the stochastic integral

$$
\tilde{V}_t = \tilde{V}_0 + \int_0^t \xi_u d\tilde{S}_u, \quad t \in \mathbb{R}_+,
$$

b) Show that as in Theorem 6.3, if $(\xi_t, \eta_t)_{t \in [0,T]}$ hedges the claim C, i.e. if $V_T = C$, then the arbitrage price of the claim C is given by

$$
\pi_t(C) = V_t = e^{-(T-t)r} \hat{E}[C \mid \mathcal{F}_t], \quad 0 \leq t \leq T,
$$

where \hat{E} denotes expectation under a suitably chosen risk-neutral probability measure \hat{P}.

c) Compute the price at time $t \in [0,T]$ of the European call option in a market with dividend rate δ by the martingale method.

Exercise 6.7 Forward start options Rubinstein (1991). A forward start European call option is an option whose holder receives at time T_1 (e.g. your birthday) the value of a standard European call option at the money and with maturity $T_2 > T_1$. Price this birthday present at any time $t \in [0,T_1]$, i.e. compute the price

$$
e^{-(T_1-t)r} \mathbb{E}^* \left[e^{-(T_2-T_1)r} \mathbb{E}^* \left[(S_{T_2} - S_{T_1})^+ \mid \mathcal{F}_{T_1} \right] \mid \mathcal{F}_t \right]
$$

at time $t \in [0,T_1]$, of the forward start European call option using the Black-Scholes formula.

Exercise 6.8 Log-contracts (Exercise 5.7 continued), see also Exercise 7.5. Consider the price process $(S_t)_{t \in [0,T]}$ given by

$$
\frac{dS_t}{S_t} = rdt + \sigma dB_t
$$

and a risk-free asset of value $A_t = A_0 e^{rt}$, $t \in [0,T]$, with $r > 0$. Compute the arbitrage price

$$
C(t, S_t) = e^{-(T-t)r} \mathbb{E}^* \left[\log S_T \mid \mathcal{F}_t \right],
$$

at time $t \in [0,T]$, of the log-contract with payoff $\log S_T$.

Exercise 6.9 Power option. (Exercise 5.3 continued). Consider the price process $(S_t)_{t \in [0,T]}$ given by

This version: March 18, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
Martingale Approach to Pricing and Hedging

\[
\frac{dS_t}{S_t} = rdt + \sigma dB_t
\]

and a risk-free asset of value \(A_t = A_0 e^{rt}, \ t \in [0, T] \), with \(r > 0 \). In this problem, \((\eta_t, \xi_t)_{t \in [0, T]}\) denotes a portfolio strategy with value

\[
V_t = \eta_t A_t + \xi_t S_t, \quad 0 \leq t \leq T.
\]

a) Compute the arbitrage price

\[
C(t, S_t) = e^{-(T-t)r} \mathbb{E}^* \left[|S_T|^2 \mid \mathcal{F}_t \right],
\]

at time \(t \in [0, T] \), of the power option with payoff \(|S_T|^2\).

b) Compute a self-financing portfolio strategy \((\eta_t, \xi_t)_{t \in [0, T]}\) hedging the claim \(|S_T|^2\).

Exercise 6.10 (Exercise 5.9 continued).

a) Solve the stochastic differential equation

\[
dS_t = \alpha S_t dt + \sigma dB_t
\]

in terms of \(\alpha, \sigma > 0 \), and the initial condition \(S_0 \).

b) For which value \(\alpha_M \) of \(\alpha \) is the discounted price process \(\tilde{S}_t = e^{-rt}S_t \), \(0 \leq t \leq T \), a martingale under \(\mathbb{P} \)?

c) For each value of \(\alpha \), build a probability measure \(\mathbb{P}_\alpha \) under which the discounted price process \(\tilde{S}_t = e^{-rt}S_t \), \(0 \leq t \leq T \), is a martingale.

d) Compute the arbitrage price

\[
C(t, S_t) = e^{-(T-t)r} \mathbb{E}_\alpha \left[\exp(S_T) \mid \mathcal{F}_t \right]
\]

at time \(t \in [0, T] \) of the contingent claim with payoff \(\exp(S_T) \), and recover the result of Exercise 5.9.

e) Explicitly compute the portfolio strategy \((\eta_t, \xi_t)_{t \in [0, T]}\) that hedges the contingent claim \(\exp(S_T) \).

f) Check that this strategy is self-financing.

Exercise 6.11 Let \((B_t)_{t \in \mathbb{R}_+}\) be a standard Brownian motion generating a filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\). Recall that for \(f \in C^2(\mathbb{R}_+ \times \mathbb{R}) \), Itô’s formula for \((B_t)_{t \in \mathbb{R}_+}\) reads

\[
f(t, B_t) = f(0, B_0) + \int_0^t \frac{\partial f}{\partial s}(s, B_s) ds
\]

\[
+ \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds.
\]
a) Let $r \in \mathbb{R}$, $\sigma > 0$, $f(x,t) = e^{rt + \sigma x - \sigma^2 t/2}$, and $S_t = f(t, B_t)$. Compute $df(t, B_t)$ by Itô’s formula, and show that S_t solves the stochastic differential equation

$$dS_t = rS_t dt + \sigma S_t dB_t,$$

where $r > 0$ and $\sigma > 0$.

b) Show that

$$\mathbb{E} \left[e^{\sigma B_T} \mid \mathcal{F}_t \right] = e^{\sigma B_t + \sigma^2 (T-t)/2}, \quad 0 \leq t \leq T.$$

Hint: Use the independence of increments of $(B_t)_{t \in [0,T]}$ in the time splitting decomposition

$$B_T = (B_t - B_0) + (B_T - B_t),$$

and the Gaussian moment generating function $\mathbb{E} \left[e^{\alpha X} \right] = e^{\alpha^2 \eta^2 / 2}$ when $X \sim \mathcal{N}(0, \eta^2)$.

c) Show that the process $(S_t)_{t \in \mathbb{R}^+}$ satisfies

$$\mathbb{E} \left[S_T \mid \mathcal{F}_t \right] = e^{(T-t)r} S_t, \quad 0 \leq t \leq T.$$

d) Let $C = S_T - K$ denote the payoff of a forward contract with exercise price K and maturity T. Compute the discounted expected payoff

$$V_t := e^{-(T-t)r} \mathbb{E} [C \mid \mathcal{F}_t].$$

e) Find a self-financing portfolio strategy $(\xi_t, \eta_t)_{t \in \mathbb{R}^+}$ such that

$$V_t = \xi_t S_t + \eta_t A_t, \quad 0 \leq t \leq T,$$

where $A_t = A_0 e^{rt}$ is the price of a risk-free asset with interest rate $r > 0$. Show that it recovers the result of Exercise 5.5-(c).

f) Show that the portfolio allocation $(\xi_t, \eta_t)_{t \in [0,T]}$ found in Question (e) hedges the payoff $C = S_T - K$ at time T, i.e. show that $V_T = C$.

Exercise 6.12 Binary options. Consider a price process $(S_t)_{t \in \mathbb{R}^+}$ given by

$$\frac{dS_t}{S_t} = r dt + \sigma dB_t, \quad S_0 = 1,$$

under the risk-neutral probability measure \mathbb{P}^\ast. A binary (or digital) *call*, resp. *put*, option is a contract with maturity T, strike price K, and payoff

$$C_d := \begin{cases} 1 & \text{if } S_T \geq K, \\ 0 & \text{if } S_T < K, \end{cases} \quad \text{resp.} \quad P_d := \begin{cases} 1 & \text{if } S_T \leq K, \\ 0 & \text{if } S_T > K. \end{cases}$$
Recall that the prices $\pi_t(C_d)$ and $\pi_t(P_d)$ at time t of the binary call and put options are given by the discounted expected payoffs

$$\pi_t(C_d) = e^{-(T-t)r} \mathbb{E}[C_d \mid \mathcal{F}_t] \quad \text{and} \quad \pi_t(P_d) = e^{-(T-t)r} \mathbb{E}[P_d \mid \mathcal{F}_t].$$

(6.34)

a) Show that the payoffs C_d and P_d can be rewritten as

$$C_d = 1_{[K,\infty)}(S_T) \quad \text{and} \quad P_d = 1_{[0,K]}(S_T).$$

b) Using Relation (6.34), Question (a), and the relation

$$\mathbb{E}[1_{[K,\infty)}(S_T) \mid S_t = x] = \mathbb{P}^*(S_T \geq K \mid S_t = x),$$

show that the price $\pi_t(C_d)$ is given by

$$\pi_t(C_d) = C_d(t, S_t),$$

where $C_d(t, x)$ is the function defined by

$$C_d(t, x) := e^{-(T-t)r} \mathbb{P}^*(S_T \geq K \mid S_t = x).$$

c) Using the results of Exercise 4.19-(d) and of Question (b), show that the price $\pi_t(C_d)$ of the binary call option is given by

$$C_d(t, x) = e^{-(T-t)r} \Phi \left(\frac{(r - \sigma^2/2)(T-t) + \log(x/K)}{\sigma \sqrt{T-t}} \right)$$

$$= e^{-(T-t)r} \Phi(d_-(T-t)),$$

where

$$d_-(T-t) = \frac{(r - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}}.$$

d) Assume that the binary option holder is entitled to receive a “return amount” $\alpha \in [0, 1]$ in case the underlying ends out of the money at maturity. Compute price at time $t \in [0,T]$ of this modified contract.

e) Using Relation (6.34) and Question (a), prove the call-put parity relation

$$\pi_t(C_d) + \pi_t(P_d) = e^{-(T-t)r}, \quad 0 \leq t \leq T.$$

(6.35)

If needed, you may use the fact that $\mathbb{P}^*(S_T = K) = 0$.

f) Using the results of Questions (e) and (c), show that the price $\pi_t(P_d)$ of the binary put option is given by

$$\pi_t(P_d) = e^{-(T-t)r} \Phi(-d_-(T-t)).$$

g) Using the result of Question (c), compute the Delta
of the binary call option. Does the Black-Scholes hedging strategy of such a call option involve short selling? Why?

h) Using the result of Question (f), compute the Delta

\[\xi_t := \frac{\partial C_d}{\partial x}(t, S_t) \]

of the binary put option. Does the Black-Scholes hedging strategy of such a put option involve short selling? Why?

Exercise 6.13 Computation of Greeks. Consider an underlying asset whose price \((S_t)_{t \in \mathbb{R}_+}\) is given by a stochastic differential equation of the form

\[dS_t = rS_t dt + \sigma(S_t) dW_t, \]

where \(\sigma(x)\) is a Lipschitz coefficient, and an option with payoff function \(\phi\) and price

\[C(x, T) = e^{-rT} \mathbb{E}\left[\phi(S_T) \mid S_0 = x\right], \]

where \(\phi(x)\) is a twice continuously differentiable (\(C^2\)) function, with \(S_0 = x\). Using the Itô formula, show that the sensitivity

\[\Theta_T = \frac{\partial}{\partial T}(e^{-rT} \mathbb{E}\left[\phi(S_T) \mid S_0 = x\right]) \]

of the option price with respect to maturity \(T\) can be expressed as

\[\Theta_T = -r e^{-rT} \mathbb{E}\left[\phi(S_T) \mid S_0 = x\right] + r e^{-rT} \mathbb{E}\left[S_t \phi'(S_T) \mid S_0 = x\right] + \frac{1}{2} e^{-rT} \mathbb{E}\left[\phi''(S_T)\sigma^2(S_T) \mid S_0 = x\right]. \]

Problem 6.14 Chooser options. In this problem we denote by \(C(t, S_t, K, T),\) resp. \(P(t, S_t, K, T),\) the price at time \(t\) of a European call, resp. put, option with strike price \(K\) and maturity \(T,\) on an underlying asset priced under the risk-neutral probability measure as \(S_t = S_0 e^{\sigma B_t + rt - \sigma^2 t/2}, t \in \mathbb{R}_+.\)

a) Prove the call-put parity formula

\[C(t, S_t, K, T) - P(t, S_t, K, T) = S_t - K e^{-(T-t)r}, \quad 0 \leq t \leq T. \]

b) Consider an option contract with maturity \(T,\) which entitles its holder to receive at time \(T\) the value of a European put option with strike price \(K\) and maturity \(U > T.\)
Write down the price this contract at time $t \in [0, T]$ using a conditional expectation under the risk-neutral probability measure \mathbb{P}^\ast.

c) Consider now an option contract with maturity T, which entitles its holder to receive at time T either the value of a European call option or a European put option whichever is higher. The European call and put options have same strike price K and same maturity $U > T$.

Show that at maturity T, the payoff of this contract can be written as

$$P(T, S_T, K, U) + \max\left(0, S_T - K e^{-(U-T)r}\right).$$

Hint: Use the call-put parity formula (6.36).

d) Price the contract of Question (c) at any time $t \in [0, T]$ using the call and put option pricing functions $C(t, x, K, T)$ and $P(t, x, K, U)$.

e) Using the Black-Scholes formula, compute the self-financing hedging strategy $(\xi_t, \eta_t)_{t \in [0, T]}$ with portfolio value

$$V_t = \xi_t S_t + \eta_t e^{rt}, \quad 0 \leq t \leq T,$$

for the option contract of Question (c).

f) Consider now an option contract with maturity T, which entitles its holder to receive at time T the value of either a European call or a European put option, whichever is lower. The two options have same strike price K and same maturity $U > T$.

Show that the payoff of this contract at maturity T can be written as

$$C(T, S_T, K, U) - \max\left(0, S_T - K e^{-(U-T)r}\right).$$

g) Price the contract of Question (f) at any time $t \in [0, T]$.

h) Using the Black-Scholes formula, compute the self-financing hedging strategy $(\xi_t, \eta_t)_{t \in [0, T]}$ with portfolio price

$$V_t = \xi_t S_t + \eta_t e^{rt}, \quad 0 \leq t \leq T,$$

for the option contract of Question (f).

i) Give the price and hedging strategy of the contract that yields the sum of the payoffs of Questions (c) and (f).

j) What happens when $U = T$? Give the payoffs of the contracts of Questions (c), (f) and (i).

Problem 6.15 Consider a risky asset priced

$$S_t = S_0 e^{\sigma B_t + \mu t - \sigma^2 t/2}, \quad i.e. \quad dS_t = \mu S_t dt + \sigma S_t dB_t, \quad t \in \mathbb{R}_+,$$
a risk-free asset priced $A_t = A_0 e^{rt}$, and a self-financing portfolio allocation $(\eta_t, \xi_t)_{t \in \mathbb{R}_+}$ with value $V_t := \eta_t A_t + \xi_t S_t, \quad t \in \mathbb{R}_+$.

a) Using the portfolio self-financing condition $dV_t = \eta_t dA_t + \xi_t dS_t$, show that we have

$$V_T = V_t + \int_t^T (rV_s + (\mu - r)\xi_s S_s)ds + \sigma \int_t^T \xi_s S_s dB_s.$$

b) * Show that under the risk-neutral probability measure \mathbb{P}^* the portfolio value V_t satisfies the Backward Stochastic Differential Equation (BSDE)

$$V_t = V_T - \int_t^T rV_s ds - \int_t^T \pi_s d\tilde{B}_s,$$

(6.37)

where $\pi_t := \sigma \xi_t S_t$ is the risky amount invested on the asset S_t, multiplied by σ, and $(\tilde{B}_t)_{t \in \mathbb{R}_+}$ is a standard Brownian motion under \mathbb{P}^*. Show that under the risk-neutral probability measure \mathbb{P}^*, the discounted portfolio value $\tilde{V}_t := e^{-rt}V_t$ can be rewritten as

$$\tilde{V}_T = \tilde{V}_0 + \int_0^T e^{-rs} \pi_s d\tilde{B}_s.$$

(6.38)

c) Express $dv(t, S_t)$ by the Itô formula, where $v(t, x)$ is a C^2 function of t and x.

d) Consider now a more general BSDE of the form

$$V_t = V_T - \int_t^T f(s, S_s, V_s, \pi_s)ds - \int_t^T \pi_s dB_s,$$

(6.39)

with terminal condition $V_T = g(S_T)$. By matching (6.39) to the Itô formula of Question (c), find the PDE satisfied by the function $v(t, x)$ defined as $V_t = v(t, S_t)$.

e) Show that when $f(t, x, v, z) = rv + \frac{\mu - r}{\sigma} z$, the PDE of Question (d) recovers the standard Black-Scholes PDE.

f) Assuming again $f(t, x, v, z) = rv + \frac{\mu - r}{\sigma} z$ and taking the terminal condition

$$V_T = (S_0 e^{\sigma B_T + (\mu - \sigma^2/2)T} - K)^+,

$$
give the process $(\pi_t)_{t \in [0, T]}$ appearing in the stochastic integral representation (6.38) of the discounted claim $e^{-rT}(S_0 e^{\sigma B_T + (\mu - \sigma^2/2)T} - K)^+$.

* The Girsanov Theorem 7.3 states that $\tilde{B}_t := B_t + (\mu - r)t/\sigma$ is a standard Brownian motion under \mathbb{P}^*.

† General Black-Scholes knowledge can be used for this question.
g) From now on we assume that short selling is penalized\(^*\) at a rate \(\gamma > 0\), i.e. \(\gamma S_t|\xi_t|dt\) is subtracted from the portfolio value change \(dV_t\) whenever \(\xi_t < 0\) over the time period \([t, t + dt]\). Rewrite the self-financing condition using \((\xi_t)^- := -\min(\xi_t, 0)\).

h) Find the BSDE of the form (6.39) satisfied by \((V_t)_{t \in \mathbb{R}_+}\), and the corresponding function \(f(t, x, v, z)\).

i) Under the above penalty on short selling, find the PDE satisfied by the function \(u(t, x)\) when the portfolio value \(V_t\) is given as \(V_t = u(t, S_t)\).

j) **Differential interest rate.** Assume that one can borrow only at a rate \(R\) which is higher\(^†\) than the risk-free rate \(r > 0\), i.e. we have

\[
dV_t = R\eta_t A_t dt + \xi_t dS_t
\]

when \(\eta_t < 0\), and

\[
dV_t = r\eta_t A_t dt + \xi_t dS_t
\]

when \(\eta_t > 0\). Find the PDE satisfied by the function \(u(t, x)\) when the portfolio value \(V_t\) is given as \(V_t = u(t, S_t)\).

k) Assume that the portfolio differential reads

\[
dV_t = \eta_t dA_t + \xi_t dS_t - dU_t,
\]

where \((U_t)_{t \in \mathbb{R}_+}\) is an increasing process. Show that the corresponding portfolio strategy \((\xi_t)_{t \in \mathbb{R}_+}\) is superhedging the claim \(V_T = C\).

Exercise 6.16 Girsanov theorem. Assume that the Novikov integrability condition (6.8) is not satisfied. How does this modify the statement (6.9) of the Girsanov Theorem 6.2?

Problem 6.17 Log options.

a) Consider a market model made of a risky asset with price \((S_t)_{t \in \mathbb{R}_+}\) as in Exercise 4.23-(d) and a risk-free asset with price \(A_t = \$1 \times e^{rt}\) and risk-free interest rate \(r = \sigma^2/2\). From the answer to Exercise 4.23-(b), show that the arbitrage price

\[
V_t = e^{-(T-t)r} \mathbb{E} \left[(\log S_T)^+ \mid \mathcal{F}_t \right]
\]

at time \(t \in [0, T]\) of a log call option with payoff \((\log S_T)^+\) is equal to

\[
V_t = \sigma e^{-(T-t)r} \sqrt{\frac{T-t}{2\pi}} e^{-B_t^2/(2(T-t))} + \sigma e^{-(T-t)r} B_t \Phi \left(\frac{B_t}{\sqrt{T-t}} \right).
\]

\(*\) SGX started to penalize naked short sales with an interim measure in September 2008.

\(^†\) Regular savings account usually pays \(r=0.05\%\) per year. Effective Interest Rates (EIR) for borrowing could be as high as \(R=20.61\%\) per year.
b) Show that V_t can be written as

$$V_t = g(T - t, S_t),$$

where $g(\tau, x) = e^{-\tau r} f(\tau, \log x)$, and

$$f(\tau, y) = \sigma \sqrt{\frac{\tau}{2\pi}} e^{-y^2/(2\sigma^2 \tau)} + y \Phi\left(\frac{y}{\sigma \sqrt{\tau}}\right).$$

c) Figure 6.4 represents the graph of $(\tau, x) \mapsto g(\tau, x)$, with $r = 0.05 = 5\%$ per year and $\sigma = 0.1$. Assume that the current underlying price is 1 and there remains 700 days to maturity. What is the price of the option?

![Option price graph](Fig. 6.4: Option price as a function of the underlying and of time to maturity.)

d) Show* that the (possibly fractional) quantity $\xi_t = \frac{\partial g}{\partial x}(T - t, S_t)$ of S_t at time t in a portfolio hedging the payoff $(\log S_T)^+$ is equal to

$$\xi_t = e^{-(T-t)r} \frac{1}{S_t} \Phi\left(\frac{\log S_t}{\sigma \sqrt{T-t}}\right), \quad 0 \leq t \leq T.$$

e) Figure 6.5 represents the graph of $(\tau, x) \mapsto \frac{\partial g}{\partial x}(\tau, x)$. Assuming that the current underlying price is 1 and that there remains 700 days to maturity, how much of the risky asset should you hold in your portfolio in order to hedge one log option?

* Recall the chain rule of derivation $\frac{\partial}{\partial x} f(\tau, \log x) = \frac{1}{x} \frac{\partial f}{\partial y}(\tau, y)|_{y=\log x}$.

This version: March 18, 2019
http://www.ntu.edu.sg/home/nprivault/indext.html
f) Based on the framework and answers of Questions (c) and (e), should you borrow or lend the risk-free asset \(A_t = 1 \times e^{rt} \), and for what amount?

g) Show that the Gamma of the portfolio, defined as \(\Gamma_t = \frac{\partial^2 g}{\partial x^2}(T-t,S_t) \), equals

\[
\Gamma_t = e^{-(T-t)r} \frac{1}{S_t^2} \left(\frac{1}{\sigma \sqrt{2\pi(T-t)}} e^{-(\log S_t)^2/(2\sigma^2(T-t))} - \Phi \left(\frac{\log S_t}{\sigma \sqrt{T-t}} \right) \right),
\]

\(0 \leq t < T \).

h) Figure 6.6 represents the graph of Gamma. Assume that there remains 60 days to maturity and that \(S_t \), currently at $1, is expected to increase. Should you buy or (short) sell the underlying asset in order to hedge the option?

\[
\Gamma_t = e^{-(T-t)r} \frac{1}{S_t^2} \left(\frac{1}{\sigma \sqrt{2\pi(T-t)}} e^{-(\log S_t)^2/(2\sigma^2(T-t))} - \Phi \left(\frac{\log S_t}{\sigma \sqrt{T-t}} \right) \right),
\]

\(0 \leq t < T \).

i) Let now \(\sigma = 1 \). Show that the function \(f(\tau,y) \) of Question (b) solves the heat equation.
Problem 6.18 Log put options with a given strike price.

a) Consider a market model made of a risky asset with price \((S_t)_{t \in \mathbb{R}^+}\) as in Exercise 4.19, a risk-free asset with price \(A_t = \$1 \times e^{rt}\), risk-free interest rate \(r = \frac{\sigma^2}{2}\) and \(S_0 = 1\). From the answer to Exercise A.4-(b), show that the arbitrage price

\[
V_t = e^{-r(T-t)} \mathbb{E}^* \left[(K - \log S_T)^+ \mid \mathcal{F}_t \right]
\]

at time \(t \in [0, T]\) of a log call option with strike price \(K\) and payoff \((K - \log S_T)^+\) is equal to

\[
V_t = \sigma e^{-(T-t)r} \sqrt{\frac{T-t}{2\pi}} \left(e^{-(B_t-K/\sigma)^2/(2(T-t))} + e^{-(T-t)r} \left(K - \sigma B_t \right) \Phi \left(\frac{K}{\sigma - B_t} \right) \right).
\]

b) Show that \(V_t\) can be written as

\[
V_t = g(T-t, S_t),
\]

where \(g(\tau, x) = e^{-r\tau}f(\tau, \log x)\), and

\[
f(\tau, y) = \sqrt{\frac{\tau}{2\pi}} e^{-(K-y)^2/(2\sigma^2\tau)} + (K-y)\Phi \left(\frac{K-y}{\sigma \sqrt{\tau}} \right).
\]

c) Figure 6.7 represents the graph of \((\tau, x) \mapsto g(\tau, x)\), with \(r = 0.125 \text{ per year}\) and \(\sigma = 0.5\). Assume that the current underlying price is \$3, that \(K = 1\), and that there remains 700 days to maturity. What is the price of the option?

![Fig. 6.7: Option price as a function of the underlying and of time to maturity.](http://www.ntu.edu.sg/home/nprivault/index.html)
d) Show* that the quantity $\xi_t = \frac{\partial g}{\partial x}(T-t, S_t)$ of S_t at time t in a portfolio hedging the payoff $(K - \log S_T)^+$ is equal to

$$\xi_t = -e^{-(T-t)r} \frac{1}{S_t} \Phi \left(\frac{K - \log S_t}{\sigma \sqrt{T-t}} \right), \quad 0 \leq t \leq T.$$

e) Figure 6.8 represents the graph of $(\tau, x) \mapsto \frac{\partial g}{\partial x}(\tau, x)$. Assuming that the current underlying price is 3 and that there remains 700 days to maturity, how much of the risky asset should you hold in your portfolio in order to hedge one log option?

![Fig. 6.8: Delta as a function of the underlying and of time to maturity.](image_url)

f) Based on the framework and answers of Questions (c) and (e), should you borrow or lend the risk-free asset $A_t = \$1 \times e^{rt}$, and for what amount?

g) Show that the Gamma of the portfolio, defined as $\Gamma_t = \frac{\partial^2 g}{\partial x^2}(T-t, S_t)$, equals

$$\Gamma_t = e^{-(T-t)r} \frac{1}{S_t^2} \left(\frac{1}{\sigma \sqrt{2\pi(T-t)}} e^{-(K-\log S_t)^2/(2\sigma^2(T-t))} + \Phi \left(\frac{K - \log S_t}{\sigma \sqrt{T-t}} \right) \right),$$

$0 \leq t \leq T$.

h) Figure 6.9 represents the graph of Gamma. Assume that there remains 10 days to maturity and that S_t, currently at 3, is expected to increase. Should you buy or (short) sell the underlying asset in order to hedge the option?

* Recall the chain rule of derivation $\frac{\partial}{\partial x} f(\tau, \log x) = \frac{1}{x} \frac{\partial f}{\partial y}(\tau, y)|_{y = \log x}$.
i) Show that the function $f(\tau, y)$ of Question (b) solves the heat equation

$$\begin{aligned}
&\frac{\partial f}{\partial \tau}(\tau, y) = \frac{\sigma^2}{2} \frac{\partial^2 f}{\partial y^2}(\tau, y) \\
&f(0, y) = (K - y)^+.
\end{aligned}$$