24.1 Background

Motion event in this chapter refers to the event in which an object moves and changes its location with respect to another object (the reference object). Chinese can express a motion event by only one verbal morpheme (1a) or by a concatenation of verbal morphemes (1b).¹

(1) a. ruguo ni bu jieyi de hua, wo jiu hui fangjian le
 if you NEG mind REL word I then return room PRT
 ‘If you do not mind, I will go back to the room.’ (PKU Corpus)²

 b. ta gunong-zhe zou-hui fangjian
 he mutter-DUR walk-return room
 ‘He walked back to the room, muttering.’ (PKU Corpus)

This chapter mainly discusses the latter type and calls them multimorpheme motion constructions (MMMCs). Many previous studies either treat MMMCs as a type of resultative verbal compounds or suggest that there is a temporally sequential relationship between these morphemes. However, these observations cannot account for all possible Chinese MMMCs or the relative order between the motion morphemes.
24.1.1 Multimorpheme Motion Constructions as Resultative Verbal Compounds

Resultative verbal compounds are compounds consisting of two elements in which the second element specifies some result of the action denoted by the first (Li and Thompson 1981). Chinese motion constructions with two or three immediately adjacent motion morphemes are often treated as a type of resultative verbal compound (Li and Thompson 1981, among many others). For instance, in (2a) and (2b), the second motion morpheme luo ‘fall’ and jin ‘enter’ are understood as the results of the event of rolling.

(2) a. buduan you xuanshi gun-luo
 continuously have hanging.stone roll-fall
 ‘There were hanging stones continuously rolling and falling.’ (PKU Corpus)

 b. qiche gun-jin-le shangou
 car roll-enter-ASP valley
 ‘The car rolled into the valley.’ (PKU Corpus)

However, the two resultative morphemes in (2), luo ‘fall’ and jin ‘enter’, can also occur together, and when they do so, only luo ‘fall’ can precede jin ‘enter’, but not vice versa, as in (3). Therefore, a more fine-grained account is necessary for the relation and distribution of the resultative motion morphemes.

(3) a. yi-kuai shizi luo-jin-le shui-li
 one-CLF pebble fall-enter-ASP water-inside
 ‘A pebble fell into the water.’ (PKU Corpus)

 b. *jin-luo shui-li
 enter-fall water-inside

24.1.2 Multimorpheme Motion Constructions with a Temporally Sequential Relation

Tai (1985) and Li (1993) propose that, in Chinese, the order of two syntactic units follows the temporal order of the (sub)events they denote. The proposal holds for two units with a temporally sequential relationship. For instance, lei-ku (tired-weep) describes a situation in which a person weeps as a result of being tired, whereas ku-lei (weep-tired) describes a situation in which a person becomes tired as a result of weeping (Li 1993). However, it is unable to explain MMMCs where the motion morphemes denote simultaneous subevents. For instance, a person can run and ascend stairs at
the same time, especially if the person stands at the lower ends of the stairs before the motion, as in (4).

(4) a. ta pao-shang louti
 he run-ascend stairs
 ‘He went up the stairs running.’

 b. *ta shang-pao louti
 he ascend-run stairs

This chapter introduces an alternate approach from the perspective of the syntax-semantics interface that can better capture the encoding of motion events in Chinese. The approach investigates the possible types into which Chinese motion morphemes can fall, as well as the semantic relationships and relative order between the motion morphemes of different types.

24.2 A Fine-Grained Classification of Chinese Motion Morphemes

This section first reviews the traditional two-way classification of motion morphemes by Talmy (2000). Then it introduces a more fine-grained four-way classification based on “scale structure” (Kennedy and McNally 2005; Rappaport Hovav and Levin 2010) and shows that, following the latter approach, Chinese motion morphemes can be classified into four types (Lin 2011; Lin and Peck 2011). A set of diagnostics is also introduced to determine into which type each Chinese motion morpheme falls.

24.2.1 Two-Way Classification of Motion Morphemes

Motion morphemes are traditionally classified into two types by Talmy (2000). One type is a manner-of-motion morpheme that specifies how a motion event is carried out (e.g., fei ‘fly’, gun ‘roll’). The other is a path morpheme that specifies in which direction a motion event is carried out (e.g., luo ‘fall’, jin ‘enter’). In Chinese, when a manner-of-motion morpheme and a path morpheme occur together, the former must precede the latter, as in (2). However, as illustrated in (3), the two path morphemes luo ‘fall’ and jin ‘enter’ can occur together, and luo necessarily occurs before jin. Therefore, the two-way classification is unable to account for the order of these two co-occurring path morphemes. In addition, no systematic criteria are proposed in previous work to distinguish the two types and, thus, some motion morphemes are classified in different ways by different linguists. For example, diao ‘fall’ and zuan ‘squeeze/get into’ are manner-of-motion morphemes according to Chen and Guo (2009) but path morphemes according
24.2.2 Four-Way Classification of Motion Morphemes

Rappaport Hovav and Levin (2010) propose that motion verbs and change-of-state verbs can be classified into four types according to the verbs’ scale structure. A scale is composed of a set of ordered points or intervals indicating measuring values on a dimension (e.g., height, distance, or temperature; Kennedy and McNally 2005; Rappaport Hovav 2008; Rappaport Hovav and Levin 2010, among others). In the domain of motion, a scale is understood on the dimension of distance, that is, the distance of the moving object with respect to the reference object, and the scale is composed of points that are “a set of contiguous locations which together form a path” and are ordered in the direction of movement (Rappaport Hovav and Levin 2010:29). For instance, the points in the scale lexicalized in descend are ordered in the direction of the reference object, gravity, whereas the points in the scale of recede are ordered in a direction from the reference object, that is, the starting point of the receding event. The moving object’s location on the path represents a value for its distance with respect to the reference object; when the moving object changes its location along the path, the value changes too, so the change is understood as a scalar change that is measurable on the dimension of distance (Rappaport Hovav and Levin 2010).

A scale has three properties that classify motion morphemes into four types (Rappaport Hovav and Levin 2010): The first property is existence of a scale, that is, whether the motion takes place along a scale, which classifies motion morphemes into scalar change motion morphemes (e.g., recede, return, enter) and nonscalar change motion morphemes (e.g., fly, walk); The second property is boundedness, that is, whether a scale has an endpoint, which further divides scalar change motion morphemes into open scale motion morphemes (e.g., recede, ascend) and closed scale motion morphemes (e.g., return, enter); The third property is punctuality, that is, whether motion along a scale is durative (with multiple points) or punctual (with two points, i.e., the starting and ending points), and it divides closed scale motion morphemes into multipoint closed scale motion morphemes (e.g., return, come) and two-point closed scale motion morphemes (e.g., enter, arrive). Of the four types, nonscalar change motion morphemes are equivalent to Talmy’s manner-of-motion verbs, whereas the other three types are a further classification of Talmy’s path verbs, as illustrated in Figure 24.1.

Following Rappaport Hovav and Levin (2010), Lin (2011) and Lin and Peck (2011) also classify Chinese motion morphemes into four types, as in Table 24.1.

24.2.3 Diagnostics of the Four-Way Classification of Chinese Motion Morphemes

This section introduces a set of independent diagnostics proposed by Lin (2011) and Lin and Peck (2011) in determining into which type each Chinese motion morpheme falls.
Differentiating Scalar Change from Nonscalar Change Motion Morphemes

Rappaport Hovav and Levin (2010) point out that, unlike scalar change motion morphemes, a nonscalar change motion morpheme does not lexically specify a change of location on a particular direction or denote a delimited motion event, so it is compatible with any phrases that express possible results brought about by the action denoted by the morpheme. For instance, *pao* ‘run’ allows bare XP resultative complements and non-subcategorized objects with result XPs predicated of them.
The Encoding of Motion Events in Mandarin Chinese

(5) a.
 ta pao-lei le
 he run-tired ASP
 ‘He was tired as a result of running.’

 b.
 ta pao-diu-le xiezi
 he run-lose-ASP shoe
 ‘He lost his shoes as a result of running.’

 c.
 ta pao-dao-le xuexiao
 he run-arrive-ASP school
 ‘He ran to the school.’

In contrast, a scalar change motion morpheme specifies a change of location in a particular direction, which can be understood as a kind of result; thus such a morpheme cannot combine with a variety of result phrases, but only those that are associated to the path of motion denoted by the morpheme, particularly phrases that further specify the path or specify an endpoint for the path (Rappaport Hovav 2008). As illustrated in (6), hui ‘return’ is compatible with a phrase denoting the endpoint of the event of returning (i.e., ‘the base’); although the moving objects can become tired or lose a weapon in the motion, no phrases denoting such states are allowed to co-occur with hui.

(6) a.
 diren hui-dao-le jidi
 enemy return-arrive-ASP base
 ‘The enemy returned to the base.’

 b.
 *diren hui-lei le
 enemy return-be.tired ASP
 ‘The enemy were tired as a result of returning.’

 c.
 *diren hui-diu-le wuqi
 enemy return-lose-ASP weapon
 ‘The enemy lost their weapon as a result of returning.’

24.2.3.2 Differentiating Closed-Scale from Open-Scale Motion Morphemes

According to Rappaport Hovav and Levin (2010), scalar change motion morphemes can be classified into closed- and open scale motion morphemes depending on whether the scale lexicalized by a given scalar change motion morpheme has an endpoint. A motion event with a closed scale does not allow the moving object to progress beyond the endpoint. For instance, “school” is the endpoint of the event in John came to the school at 8 am, so the event of coming is completed once John arrives at the school. In contrast, a moving object on an open scale does not have an endpoint at which to arrive. For instance, in an event denoted by the verb ascend, a
moving object can potentially move upward forever if there is no bound explicitly specified.

In Chinese, comparison can be expressed by a *geng* ‘more’ phrase, for example, *geng yuan* (more far) ‘further’, *geng gao* (more high) ‘higher’. If a scalar change motion morpheme is compatible with the *geng* comparative, the morpheme has an open scale in that it allows a moving object to move further along the scale; otherwise, it has a closed scale. As illustrated in (7), *sheng* allows the *geng* comparative, whereas *hui* ‘return’ does not.

(7) a. qiqiu 5-fenzhong-qian jiu xiang shang sheng le,
balloon 5-minute-before then toward up ascend ASP
xianzai sheng de geng gao le
now ascend MOD more high PRT
‘The balloon began ascending five minutes ago; now it has gone up higher.’

b. ta 5-fenzhong-qian jiu hui jia le, *xianzai hui de geng yuan le
he 5-minute-before then return home ASP now return MOD more far PRT
‘He began returning home five minutes ago; #now he has returned farther.’

24.2.3.3 Differentiating Multipoint Closed from Two-Point Closed-Scale Motion Verbs

Closed scale motion morphemes can be further classified into multipoint and two-point closed scale motion morphemes depending on the length of the path in a motion event (Beavers 2008; Rappaport Hovav and Levin 2010, among others). According to Beavers (2008), the scale of a two-point closed scale motion morpheme such as *arrive* and *enter* is associated with only two values, that is, being at an endpoint or not, and the transition from one point to the other is usually understood as instantaneous; in contrast, the scales of multipoint closed scale motion morphemes (e.g., *return* and *come*) are composed of a starting point and an endpoint, as well as many points in between. In this sense, although motion along a multipoint closed scale is also telic, that is, there exists an endpoint for the motion, the motion is gradual and takes time, and thus the event is durative. Therefore, a moving object can stop for a while before it arrives at the endpoint on a scale with multiple points but not on a two-point scale (Beavers 2008). As illustrated in (8), the motions denoted by *hui* ‘return’ allow a moving object to stop on the scale, whereas *jin* ‘enter’ does not.

(8) a. ta hui sushe hui-le yiban tingxia-le
he return dorm return-ASP half stop-ASP
‘He returned halfway to the dorm and stopped.’

b. *ta jin fangjian jin-le yiban tingxia-le
he enter room enter-ASP half stop-ASP
*’He entered the room halfway and stopped.’
The diagnostics are expected to be able to determine the scalar type into which each individual motion morpheme falls (Lin 2011; Lin and Peck 2011). Lin (2011) also observes that in the same scalar type, a few motion morphemes may be less prototypical than the others. For example, *guo* ‘cross’ does not specify the duration of the motion; rather, the duration is determined by its complement: the event of crossing is durative if the location has a long path (e.g., a long bridge) but punctual if the path is sufficiently short (e.g., a police line drawn on the ground). Therefore, *guo* can be understood either as a multi-point or two-point closed scale motion morpheme. Other examples that require special attention include *shang* ‘ascend’ and *xia* ‘descend’. The two morphemes are identified as open scale motion morphemes according to the diagnostics, but while all other morphemes of the same type (e.g., *tui* ‘recede’, *luo* ‘fall’) cannot or do not take complements directly, *shang/xia* usually require a location NP complement or are followed by *lai/qu* ‘come/go’, for example, *shang erlou* (ascend second-floor) ‘go up to the second floor’, *xia-lai* (descend-come) ‘go down to the deictic center’. Despite these distributional differences, the proposed diagnostics are able to classify all Chinese motion morphemes into the four scalar types. Furthermore, the diagnostics can also be applied to bound motion morphemes, that is, morphemes that are no longer used as independent verbs in Modern Chinese (e.g., *ru* ‘enter’, *fan* ‘return’; Lin 2011). Table 24.2 provides a list of Chinese free and bound motion morphemes classified into different scalar types.

Table 24.2 Examples of Chinese motion morphemes of different scalar types

<table>
<thead>
<tr>
<th>Types</th>
<th>Nonscalar change motion morphemes</th>
<th>Open scale motion morphemes</th>
<th>Multipoint closed scale motion morphemes</th>
<th>Two-point closed scale motion morphemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free motion</td>
<td>pao ‘run’</td>
<td>sheng ‘ascend’</td>
<td>hui ‘return’</td>
<td>jin ‘enter’</td>
</tr>
<tr>
<td>Morphemes</td>
<td>fei ‘fly’</td>
<td>jiang ‘descend’</td>
<td>lai ‘come’</td>
<td>chu ‘exit’</td>
</tr>
<tr>
<td></td>
<td>zou ‘walk’</td>
<td>luo ‘fall’</td>
<td>qu ‘go’</td>
<td>guo ‘cross’</td>
</tr>
<tr>
<td></td>
<td>chu ‘cross’</td>
<td>tui ‘recede’</td>
<td>guo ‘cross’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>liu ‘rush’</td>
<td>shang ‘ascend’</td>
<td>lai ‘come’</td>
<td>lai ‘come’</td>
</tr>
<tr>
<td></td>
<td>piao ‘drift’</td>
<td>xia ‘descend’</td>
<td>qu ‘go’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etc.</td>
<td>etc.</td>
<td>guo ‘cross’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etc.</td>
<td>etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bound motion</td>
<td>xiang ‘fly’</td>
<td>che ‘recede’</td>
<td>yue ‘cross’</td>
<td>yue ‘cross’</td>
</tr>
<tr>
<td>Morphemes</td>
<td>ben ‘run’</td>
<td>qi ‘rise’</td>
<td>gui ‘return’</td>
<td>ru ‘enter’</td>
</tr>
<tr>
<td></td>
<td>xing ‘walk’</td>
<td>duo ‘fall’</td>
<td>fan ‘return’</td>
<td>zhi ‘arrive’</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
<td>etc.</td>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>

The number of motion morphemes in Chinese MMMCs typically range from two (9a) to three (9b).4

24.3 Hierarchy Predicting the Order of Motion Morphemes

The number of motion morphemes in Chinese MMMCs typically range from two (9a) to three (9b).4
(9) a. women *zou-jin-le* Ding.Zuoming de jia
we walk-enter-ASP Ding.Zuoming POSS home
‘We walked into Ding Zouming’s home.’ (PKU Corpus)

b. yi.mei xuehua cong kong-zhong *piao-luo-dao* dimian
one.CLF snowflake from sky-inside drift-fall-arrive ground
‘A snowflake drifts and falls on the ground from the sky.’ (PKU Corpus)

Many MMMCs are found to end with lai ‘come’ or qu ‘go’, for example, *pao-jin-fangjian-lai* (run-enter-room-come) ‘run into the room (toward the deictic center)’, *piao-luo-hui-qu* (drift-fall-return-go) ‘drift and fall back (toward the deictic center)’. However, as Lin (2011) argues, although lai ‘come’ and qu ‘go’ are multipoint closed scale motion morphemes according to the diagnostics, when occurring in constructional-final position, they are not typical motion morphemes in that they no longer possess scalar properties such as telicity and duration. Rather, the telicity and duration of a motion event is determined by the motion morphemes preceding lai/qu; for example, the motion event is atelic if the preceding motion morpheme is atelic and punctual if the preceding morpheme is punctual. In this sense, *pao-jin-fangjian-lai* (run-enter-room-come) and *piao-luo-jin-lai* (drift-fall-enter-come) are treated as two-morpheme and three-morpheme MMMCs, respectively. The Motion Morpheme Hierarchy proposed to predict the order of motion morphemes does not take into account the constructional-final lai/qu.

Example (10) is the Motion Morpheme Hierarchy consisting of the four types of motion morphemes.

(10)

When semantically compatible motion morphemes from different classes co-occur, they will be ordered from left to right according to the hierarchy in (10). Because a multipoint and a two-point closed scale motion morpheme usually do not occur together in a motion construction and both occur in the same position in sequences of multiple motion morphemes, these two types are grouped together as one (i.e., closed scale motion morphemes) in the hierarchy. In addition, the two-point closed scale motion morpheme *dao* ‘arrive’ is treated as a special motion morpheme and positioned in the rightmost of the hierarchy because it does not behave exactly with other motion morphemes such as *jin* ‘enter’ and *chu* ‘exit’ from the same type. The rest
of this section explains the hierarchy in more detail, from two-morpheme MMMCs to three-morpheme MMMCs.

In two-morpheme MMMCs, the first morpheme must come from a type that is located to the left of the type where the second morpheme comes from. For instance, nonscalar change motion morphemes occupy the leftmost position of the hierarchy in (10). Therefore, a morpheme such as fei ‘fly’ from this type is predicted to precede any semantically compatible motion morphemes that belong to the other types in the hierarchy. Example (11) provides samples of fei preceding the open scale motion morpheme tui ‘recede’, the multipoint closed scale motion morpheme hui ‘return,’ the two-point closed scale motion morpheme jin ‘enter’, and the special motion morpheme dao ‘arrive’, whereas the reverse orders are not acceptable.

(11) a. xiang hou fei-tui de huangtu
toward back fly-recede REL yellow.dust
‘the yellow dust that is flying back’ (PKU Corpus)
b. yeya gang fei-hui beifang
wild.duck just fly-return north
‘The wild ducks just flew back to the north.’ (PKU Corpus)
c. yi.zhi yanzi fei-jin jiaoshi
one.CL swallow fly-enter classroom
‘A swallow flew into the classroom.’ (PKU Corpus)
d. na.qun xiaoniao fei-dao shu-shang
that.group little.bird fly-arrive tree-on
‘That group of birds flew onto the tree.’ (PKU Corpus)

Similarly, the class of open scale motion morphemes is located to the left of the class of closed motion morphemes (both multipoint and two-point) and dao ‘arrive’. Therefore, an open scale motion morpheme (e.g., tui ‘recede’) is predicted to precede morphemes from the latter, whereas the reverse orders are not allowed.

(12) a. jundui tui-hui Shaanxi
army recede-return Shaanxi
‘The army receded back to Shaanxi.’ (PKU Corpus)
b. Lulu manman tui-jin-le liwu
Lulu slowly recede-enter-ASP back.room
‘Lulu slowly receded into the back room.’ (PKU Corpus)
c. qiuyuan tui-dao-le chang-wai
player recede-arrive-ASP court-outside
‘The players receded outside of the court.’ (PKU Corpus)
Finally, as the hierarchy predicts, although closed scale motion morphemes usually do not co-occur, most of them can occur before the special motion morpheme *dao* ‘arrive’, as in (13).⁵

(13) a. women hui-dao Shucun we return-arrive tree.village

‘We returned to Tree Village.’ (PKU Corpus)

b. Du.Xin jin-dao fangjian-li Du.Xin enter-arrive room-inside

‘Du Xin went into the room.’ (PKU Corpus)

In a three-motion morpheme construction with each coming from a different class in the hierarchy, the order of the three morphemes also follows the hierarchy. For instance, the three morphemes, *piao* ‘drift’, *luo* ‘fall’, and *dao* ‘arrive’, in (9b), conform to the hierarchy in the order nonscalar change motion morpheme > open scale motion morpheme > special motion morpheme *dao* ‘arrive’.

Note that there is a type combination of motion morphemes whose order is not predicted by the Motion Morpheme Hierarchy (cf. Lin 2011): *tui-shang* (recede-ascend) and *tui-xia* (recede-descend). The two morphemes in each combination are from the same scalar type, that is, open scale motion morphemes, but they denote different information of motion and have a fixed order that is not predicted by the hierarchy. We come back to them in Section 24.4.

The Motion Morpheme Hierarchy is found valid with a large range of data in two corpus studies by Lin (2011). The first study investigated 263 two-morphemes found in selected chapters of four Chinese novels. Only one exception was found, but it was proven to be a misuse by the writer. The second study selected two, in some cases three, most frequently used motion morphemes of each scalar type in the first corpus study and examined their distribution in the novels of the PKU Corpus. Here 1,242 two-morpheme MMMCs were found in the corpus. All were consistent with the hierarchy, except for nineteen instances where *tui* ‘recede’ preceded *xia* ‘descend’, which is an exception to the proposed hierarchy and will be discussed in Section 24.4. In addition, the two studies found only twelve three-morpheme MMMCs, but all of them are consistent with the hierarchy.

24.4 The “Scalar Specificity Constraint”

This section discusses why the hierarchy emerges, why two closed scale motion morphemes usually do not co-occur, as well as the *tui-shang/xia* (recede ascent/descend) exceptions.

Lin (2011) proposes the Scalar Specificity Constraint to account for the hierarchy: the morpheme that is less specific about the scale in a motion event must precede the
morpheme with more specific scalar information. In terms of degree of specification about a scale, nonscalar change motion morphemes (e.g., gun 'roll') do not provide any information about the scale, open scale motion morphemes (e.g., luo 'fall') specify the existence of a scale, whereas (both multipoint and two-point) closed scale motion morphemes such as hui 'return' and jin 'enter' specify not only the existence of a scale but also the existence of an endpoint for the scale. Therefore, the fact that Chinese motion morphemes follow an order as represented by the three boxes with solid-line borders in (10) is consistent with the Scalar Specificity Constraint.

In contrast, a two-point closed scale motion morpheme (e.g., jin 'enter') is not more specific than a multipoint closed scale motion morpheme (e.g., hui 'return') in the degree of specification about a scale or vice versa: both specify the existence of a scale as well as an endpoint for the scale. Therefore, conforming to the Scalar Specificity Constraint, two closed scale motion morphemes do not co-occur, as in *hui-jin fangjian (return-enter room) and *jin-hui fangjian (enter-return room). This explains why the two types of morphemes are grouped together in (10).

The Scalar Specificity Constraint also explains why the open scale motion morphemes tui 'recede' and shang/xia 'ascend/decend' can co-occur and the former precedes the latter. As mentioned in Section 24.3, unlike other open scale motion morphemes, shang/xia require explicitly expressed information about the reference object, either via a locative NP complement or the constructional-final lai/qu, which thus help delimit the event of ascending/descending. For instance, although shang denotes an ascending event that is defaultly unbound, the NP complement such as erlou 'second floor' required by shang 'ascend' delimits the ascending event, so it ends at the second floor; similarly, lai 'come' in xia-lai (descend-come) delimits the descending event at the deictic center. Therefore, compared with tui 'recede', shang/xia and their complements are more specific about the scale of motion, and thus the existence of “tui + shang/xia + location NP/lai/qu” conforms to the constraint.

However, the Motion Morpheme Hierarchy shows that the two-point closed scale motion morpheme dao 'arrive' can follow other closed scale motion morphemes, as in hui-dao fangjian (return-arrive room) 'return to the room' and jin-dao fangjian (enter-arrive room) ‘enter the room’, whereas other two-point closed scale motion morphemes cannot (e.g., *hui/lai-jin fangjian, 'return/come-enter room'). In terms of the degree of specification of scale information, dao 'arrive' is as specific as other two-point closed scale motion morphemes, that is, they all specify the existence of a scale, as well as the existence of an endpoint for the scale. Therefore, the fact that dao 'arrive' can follow closed scale motion morphemes represents an exception to the Scalar Specificity Constraint.

24.5 Conclusion

This chapter describes the relative order of motion morphemes that co-occur in Chinese directed motion constructions within the context of the scale structure approach. The
approach provides a fine-grained analysis of the semantic relationships between these morphemes in Chinese MMMCs.

Notes

1. Previous studies disagree on the grammatical status of the morphemes that express motion in Chinese. The term “motion morpheme” is used to cover all Chinese morphemes expressing motion because the approach introduced in this chapter can be applied to morphemes of different kinds of grammatical status, including independent motion verbs, path satellites, and even bound motion morphemes that cannot be used alone as verbs in Modern Chinese.
2. Abbreviations: ASP = aspect marker; CLF = classifier; POSS = possessive marker; REL = relative clause marker. PKU Corpus refers to the corpus of Modern Mandarin Chinese constructed by the Center for Chinese Linguistics at Beijing University. The corpus has 307,317,060 characters updated on July 20, 2009. See http://ccl.pku.edu.cn/.
3. Rappaport Hovav and Levin (2010) point out that path verbs, that is, scalar change motion verbs, are result verbs. See more discussion in Rappaport Hovav and Levin (2010).
4. MMMCs with more than three motion morphemes are rarely found. There are cases in which multiple morphemes are used together, as the five morphemes in (i). However, these morphemes are actually from two independent MMMCs, tiao-chu-lai (jump-exit-come) and zou-jin...lüdian (walk-enter... hotel), because a pause or conjunction can be inserted in between them.

(i) Puxijin tiao chu-lai zou-jin-le lu-pang de yi-jia xiao lüdian
Pushkin jump exit-come walk-enter-ASP road-side REL one-CLF small hotel
‘Pushkin jumped out; walked into a small hotel on the roadside.’ (PKU Corpus)

In addition, this study does not cover the type of compounds consisting of two synonymous motion morphemes, for example, ben-pao (run-run) ‘run’, fan-hui (return-return) ‘return’, jin-ru (enter-enter) ‘enter’. These compounds are structurally different from MMMCs; see more in Lin (2011).
5. Chu-dao exit-arrive rarely occurs probably because usually, chu takes a source NP complement whereas dao takes a goal NP complement.

References

