Maximum Distance Separable Symbol-Pair Codes
ISIT 2012

Han Mao Kiah
Joint Work with: Yeow Meng Chee, Chengmin Wang

School of Physical and Mathematical Sciences,
Nanyang Technological University

6 Jul, 2012
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \(\mathbb{Z}_q \)-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
A codeword

\[(u_0, u_1, \ldots, u_{n-1})\]

can only be read as

\[
((u_0, u_1), (u_1, u_2), \ldots, (u_{n-1}, u_0)).
\]
Pair-distance

Definition

Given \(\mathbf{u} = (u_0, u_1, \ldots, u_{n-1})\), \(\mathbf{v} = (v_0, v_1, \ldots, v_{n-1})\), the pair-distance between \(\mathbf{u}\) and \(\mathbf{v}\) is given by

\[
D_p(\mathbf{u}, \mathbf{v}) = |\{i : (u_i, u_{i+1}) \neq (v_i, v_{i+1})\}|.
\]

Example

\[
D_p((0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 1)) = 6
\]
\[
D_p((0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1)) = 4
\]

Theorem (Cassuto, Blaum '11)

If \(0 < D_H(\mathbf{u}, \mathbf{v}) < n\),

\[
D_H(\mathbf{u}, \mathbf{v}) + 1 \leq D_p(\mathbf{u}, \mathbf{v}) \leq 2D_H(\mathbf{u}, \mathbf{v}).
\]

In the extreme cases in which \(D_H(\mathbf{u}, \mathbf{v}) = 0\) or \(n\), \(D_p(\mathbf{u}, \mathbf{v}) = D_H(\mathbf{u}, \mathbf{v})\).
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
C is said to have pair-distance d if $D_p(u, v) \geq d$ for all distinct $u, v \in C$

Denote such a code by $(n, d)_q$-symbol-pair code.

The maximum size of an $(n, d)_q$-symbol-pair code is denoted $A_p^q(n, d)$.

Theorem (Singleton Bound)

Let $q \geq 2$ and $2 \leq d \leq n$. Then

$$A_p^q(n, d) \leq q^{n-d+2}.$$

Hence, an $(n, d)_q$-symbol-pair code of size q^{n-d+2} is optimal and we call such a symbol-pair code maximum distance separable (MDS).
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
Trivial Fact

For distinct u, v, $D_p(u, v) \geq 2$.

So, there exists an MDS $(n, 2)_q$-symbol-pair code for all $n \geq 2$ and $q \geq 2$.
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \(\mathbb{Z}_q \)-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
Using Classical MDS Codes

Proposition

An MDS $(n, d)_q$-code with $d < n$ is an MDS $(n, d + 1)_q$-symbol-pair code.

Using Reed-Solomon codes, we have

<table>
<thead>
<tr>
<th>Classical MDS</th>
<th>MDS Symbol-pair code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(n, n - 2)_q$ for $q = 2^m$, $n \leq q + 2$</td>
<td>$(n, n - 1)_q$ for $q = 2^m$, $n \leq q + 2$</td>
</tr>
<tr>
<td>$(n, 4)_q$ for $q = 2^m$, $n \leq q + 2$</td>
<td>$(n, 5)_q$ for $q = 2^m$, $n \leq q + 2$</td>
</tr>
<tr>
<td>$(n, d)_q$ for q prime power, $3 \leq d \leq n - 1$, $n \leq q + 1$</td>
<td>$(n, d)_q$ for q prime power, $4 \leq d \leq n$, $n \leq q + 1$</td>
</tr>
<tr>
<td>$(n, 2)_q$ for $n \geq 2$, $q \geq 2$</td>
<td>$(n, 3)_q$ for $n \geq 2$, $q \geq 2$</td>
</tr>
</tbody>
</table>
From Classical MDS Codes

Proposition

An MDS \((n, d)_q\)-code with \(d < n\) is an MDS \((n, d + 1)_q\)-symbol-pair code.

Theorem (Blanchard ’93, ’94, ’95)

Let \(2 \leq d \leq n\). Then there exists an MDS \((n, d)_q\)-code for all \(q\) sufficiently large.

So, for \(2 \leq d \leq n\), MDS \((n, d)_q\)-symbol-pair codes exist for all \(q\) sufficiently large.
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
Interleaving Classical MDS Codes

Theorem (Cassuto and Blaum '11)

If there exist an \((n, d)_{q}\)-code of size \(M_1\) and an \((n, d)_{q}\)-code of size \(M_2\), then there exists a \((2n, 2d)_{q}\)-symbol-pair code of size \(M_1M_2\).

Sketch of construction.

Take \(u = (u_0, u_1, \ldots, u_{n-1})\) from a \((n, d)_{q}\)-code of size \(M_1\) and \(v = (v_0, v_1, \ldots, v_{n-1})\) from a \((n, d)_{q}\)-code of size \(M_2\) to form the codeword,

\[(u_0, v_0, u_1, v_1, \ldots, u_{n-1}, v_{n-1}).\]

Repeat for all pairs \(u, v\) to obtain the required code.

Corollary

If there exists an MDS \((n, d)_{q}\)-code, then there exists an MDS \((2n, 2d)_{q}\)-symbol-pair code.
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
Proposition

Suppose there exists an MDS \((n, d)\)_q-code and there exists an eulerian graph of order \(n\), size \(m\) and girth at least \(n - d + 1\). Then there exists an MDS \((m, m - n + d + 1)\)_q-symbol-pair code.

Example (Construction)

Extend MDS \((5, 3)\)_q-code to obtain MDS \((10, 9)\)_q-symbol-pair code using the following graph:
Example (Construction (ctd...))

Extend MDS $(5, 3)_q$-code to obtain MDS $(10, 9)_q$-symbol-pair code using the following graph:

\[
(u_0, u_1, u_2, u_3, u_4) \mapsto (u_0, u_1, u_2, u_3, u_4, u_0, u_2, u_4, u_1, u_3)
\]
MDS Conjecture

If there exists a linear classical MDS $(n, d)_q$ code, then $n \leq q + 1$ or $q = 2^r$ and $d = 4$ or $d = q$, in which case $n \leq q + 2$.
Extending Classical MDS Codes

Classical vs Symbol-Pair Codes

MDS Conjecture

If there exists a **linear** classical MDS \((n, d)_q\) code, then \(n \leq q + 1\) or \(q = 2^r\)

and \(d = 4\) or \(d = q\), in which case \(n \leq q + 2\).

- For any odd prime power \(q\), there exists a classical MDS \((q, q - 2)_q\) code.
Classical vs Symbol-Pair Codes

MDS Conjecture

If there exists a \textbf{linear} classical MDS \((n, d)_q\) code, then \(n \leq q + 1\) or \(q = 2^r\) and \(d = 4\) or \(d = q\), in which case \(n \leq q + 2\).

- For any odd prime power \(q\), there exists a classical MDS \((q, q - 2)_q\) code.
- \(K_q\) is an eulerian graph of order \(q\), size \(q(q - 1)/2\) and girth 3.
Extending Classical MDS Codes

Classical vs Symbol-Pair Codes

MDS Conjecture

If there exists a **linear** classical MDS \((n, d)_q\) code, then \(n \leq q + 1\) or \(q = 2^r\) and \(d = 4\) or \(d = q\), in which case \(n \leq q + 2\).

- For any odd prime power \(q\), there exists a classical MDS \((q, q - 2)_q\) code.
- \(K_q\) is an eulerian graph of order \(q\), size \(q(q - 1)/2\) and girth 3.
- So, there exists a MDS \((q(q - 1)/2, q(q - 1)/2 - 1)_q\)-symbol-pair code.
Classical vs Symbol-Pair Codes

MDS Conjecture

If there exists a **linear** classical MDS \((n, d)_q\) code, then \(n \leq q + 1\) or \(q = 2^r\) and \(d = 4\) or \(d = q\), in which case \(n \leq q + 2\).

- For any odd prime power \(q\), there exists a classical MDS \((q, q - 2)_q\) code.
- \(K_q\) is an eulerian graph of order \(q\), size \(q(q - 1)/2\) and girth 3.
- So, there exists a MDS \((q(q - 1)/2, q(q - 1)/2 - 1)_q\)-symbol-pair code.

Symbol-Pair Codes

There exists \(q\)-ary MDS symbol-pair codes of length \(n = \Omega(q^2)\).
Outline

1. Symbol-Pair Read Channel

2. Singleton Bound

3. Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4. Construction of MDS Cyclic Symbol-Pair Codes

5. Work in Progress
Definition

A code C is said to be \mathbb{Z}_q-linear if $u + v, \lambda u \in C$ for all $u, v \in C$ and $\lambda \in \mathbb{Z}_q$.

The pair-weight of u is

$$\text{wt}_p(u) = D_p(u, 0).$$

Lemma

Let C be a \mathbb{Z}_q-linear code. Then C has pair-distance $\min_{u \in C \backslash \{0\}} \text{wt}_p(u)$.
Proposition

Let $n \geq 4$ and define f and g as follows:

$$f : \mathbb{Z}_q^{n-2} \rightarrow \mathbb{Z}_q$$

$$u \mapsto \sum_{i=0}^{n-3} (i + 1)u_i,$$

$$g : \mathbb{Z}_q^{n-2} \rightarrow \mathbb{Z}_q$$

$$u \mapsto \sum_{i=0}^{n-3} u_i.$$

Let $C = \{(u_0, u_1, \ldots, u_{n-3}, f(u), g(u)) : u \in \mathbb{Z}_q^{n-2}\}$. Then C is a \mathbb{Z}_q-linear MDS $(n, 4)_q$-symbol-pair code.
\textbf{Proposition}

\textit{Suppose that q is odd prime and $5 \leq n \leq 2q + 3$. Define f, g and h as follows:}

\begin{align*}
 f : \mathbb{Z}_q^{n-3} &\longrightarrow \mathbb{Z}_q \\
 u &\longmapsto \sum_{i=0}^{n-4} (i + 1)u_i, \\
 g : \mathbb{Z}_q^{n-3} &\longrightarrow \mathbb{Z}_q \\
 u &\longmapsto \sum_{i=0}^{n-4} u_i, \\
 h : \mathbb{Z}_q^{n-3} &\longrightarrow \mathbb{Z}_q \\
 u &\longmapsto \sum_{i=0}^{n-4} (-1)^i u_i.
\end{align*}

Let $C = \{(u_0, u_1, \ldots, u_{n-4}, f(u), g(u), h(u)) : u \in \mathbb{Z}_q^{n-3}\}$. Then C is a \mathbb{Z}_q-linear MDS $(n, 5)_q$-symbol-pair code.
 Proposition

Let $n \geq 2$ and let

$$C = \begin{cases} \{(i, j, i, j, \ldots, i, j) : (i, j) \in \mathbb{Z}_q^2\}, & \text{if } n \text{ is even} \\ \{(i, j, i, j, \ldots, i, j, i + j) : (i, j) \in \mathbb{Z}_q^2\}, & \text{if } n \text{ is odd.} \end{cases}$$

Then C is a \mathbb{Z}_q-linear MDS $(n, n)_q$-symbol-pair code.
Outline

1 Symbol-Pair Read Channel

2 Singleton Bound

3 Construction of MDS Symbol-Pair Codes
 • Using Classical MDS Codes
 • Interleaving Classical MDS Codes
 • Extending Classical MDS Codes
 • \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4 Construction of MDS Cyclic Symbol-Pair Codes

5 Work in Progress
Cyclic Symbol-Pair Codes

Definition

C is *cyclic* if its automorphism group contains a cyclic group of order n. That is, C contains $(u_0, u_1, \ldots, u_{n-1})$ if and only if it also contains $(u_1, u_2, \ldots, u_{n-1}, u_0)$.

Example

The following code C is cyclic:

\[
\begin{align*}
(0, 0, 0, 0) & \quad (1, 1, 1, 1) & \quad (2, 2, 2, 2) & \quad (3, 3, 3, 3) & \quad (4, 4, 4, 4) \\
(0, 1, 2, 3) & \quad (0, 2, 1, 4) & \quad (0, 3, 4, 2) & \quad (0, 4, 3, 1) & \quad (1, 3, 2, 4) \\
(3, 0, 1, 2) & \quad (4, 0, 2, 1) & \quad (2, 0, 3, 4) & \quad (1, 0, 4, 3) & \quad (4, 1, 3, 2) \\
(2, 3, 0, 1) & \quad (1, 4, 0, 2) & \quad (4, 2, 0, 3) & \quad (3, 1, 0, 4) & \quad (2, 4, 1, 3) \\
(1, 2, 3, 0) & \quad (2, 1, 4, 0) & \quad (3, 4, 2, 0) & \quad (4, 3, 1, 0) & \quad (3, 2, 4, 1)
\end{align*}
\]

Furthermore, C is a MDS cyclic $(4, 4)_5$-symbol-pair code.
Mendelsohn Designs

Let $\Sigma_\ast^n = \{ \mathbf{u} \in \Sigma^n : u_0, u_1, \ldots, u_{n-1} \text{ are all distinct} \}$.
A vector $(u_0, u_1, u_2, \cdots, u_{n-1}) \in \Sigma_\ast^n$ is said to cyclically contain the ordered pairs $(u_0, u_1), (u_1, u_2), \cdots, (u_{n-1}, u_0)$.

Definition

A Mendelsohn design $M(q, n)$ is a pair (Σ, \mathcal{B}), where $|\Sigma| = q$, $\mathcal{B} \subseteq \Sigma_\ast^n$, such that each element of Σ_\ast^2 is cyclically contained in exactly one vector in \mathcal{B}. Elements of \mathcal{B} are called blocks.

Example

An $M(5, 4)$:

$\{(0, 1, 2, 3), (0, 2, 1, 4), (0, 3, 4, 2), (0, 4, 3, 1), (1, 3, 2, 4)\}$
Construction of MDS Cyclic Symbol-Pair Codes from Mendelsohn Designs

Proposition

If there exists an $M(q, n)$, then there exists a cyclic MDS $(n, n)_q$-symbol-pair code.

Sketch of Construction.

Let $M(q, n) = (\Sigma, B)$. Check that $|B| = q(q - 1)/n$.

- For each $(u_0, u_1, \ldots, u_{n-1}) \in B$, add all n cyclic shifts as codewords.
- For each $\sigma \in \Sigma$, add the codeword $(\sigma, \sigma, \ldots, \sigma)$.

This completes the construction.

Example

<table>
<thead>
<tr>
<th></th>
<th>$0, 0, 0, 0$</th>
<th>$1, 1, 1, 1$</th>
<th>$2, 2, 2, 2$</th>
<th>$3, 3, 3, 3$</th>
<th>$4, 4, 4, 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(5, 4)$:</td>
<td>$0, 1, 2, 3$</td>
<td>$0, 2, 1, 4$</td>
<td>$0, 3, 4, 2$</td>
<td>$0, 4, 3, 1$</td>
<td>$1, 3, 2, 4$</td>
</tr>
<tr>
<td></td>
<td>$3, 0, 1, 2$</td>
<td>$4, 0, 2, 1$</td>
<td>$2, 0, 3, 4$</td>
<td>$1, 0, 4, 3$</td>
<td>$4, 1, 3, 2$</td>
</tr>
<tr>
<td></td>
<td>$2, 3, 0, 1$</td>
<td>$1, 4, 0, 2$</td>
<td>$4, 2, 0, 3$</td>
<td>$3, 1, 0, 4$</td>
<td>$2, 4, 1, 3$</td>
</tr>
<tr>
<td></td>
<td>$1, 2, 3, 0$</td>
<td>$2, 1, 4, 0$</td>
<td>$3, 4, 2, 0$</td>
<td>$4, 3, 1, 0$</td>
<td>$3, 2, 4, 1$</td>
</tr>
</tbody>
</table>
Outline

1 Symbol-Pair Read Channel

2 Singleton Bound

3 Construction of MDS Symbol-Pair Codes
 - Using Classical MDS Codes
 - Interleaving Classical MDS Codes
 - Extending Classical MDS Codes
 - \mathbb{Z}_q-Linear MDS Symbol-Pair Codes

4 Construction of MDS Cyclic Symbol-Pair Codes

5 Work in Progress
Existence of MDS \((n, d)_q\)-Symbol-Pair Codes

Determine the spectrum for MDS \((n, d)_q\)-symbol-pair codes. That is, determine

\[
Q(n, d) = \{ q : \text{there exists a MDS } (n, d)_q\text{-symbol-pair code} \}.
\]

Example

For \(d \in \{2, 3, 4, n\}\),

\[
Q(n, d) = \{ q : q \geq 2 \}.
\]
Thank you for your attention!