W. Z. Shangguan, M. Saeys, and Xing Zhou

*Solid-State Electronics*,
Vol.
50, No. 7-8, pp. 1320-1329, July-August 2006.

(Manuscript received 27 December 2005; received in revised form 24
April 2006; accepted 28 April 2006)

**Copyright | Abstract
| References | Citation | Reprint
| Back**

© *2006 Elsevier Science Ltd. Personal use of this material is
permitted. However, permission* *to reprint/republish this material
for advertising or promotional purposes or* * for creating new
collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from Elsevier Science Ltd.*

Surface potential is one of the most important quantities in compact MOSFET (metal-oxide-semiconductor field-effect transistor) modeling. Current trend in compact modeling is moving from the threshold-voltage-based to the surface-potential-based models. The latter require a very accurate solution of the nonlinear implicit Pao-Sah voltage equation. Another past diffculty of the surface-potential-based models was the imaginary and thus unphysical solution when the gate voltage is very close to the flatband voltage. This was recently resolved by Sah physically, consequently mathematical conditioning is no longer necessary, although nonlinearity remains. The solutions to the Pao-Sah voltage equation are graphically demonstrated to illustrate the multiplicity of roots and to help attain the correct solution, but not suitable for numerical computation and analytical compact modeling. The main advantage of the analytical approximate solutions over the numerical one is their faster computation speed. However, all approximate solutions suffer from poor accuracy, in addition to some unexpected results. On the other hand, iterative algorithms may also return erroneous solutions by converging to the wrong roots for the surface potential. With properly chosen initial guess, the Newton-Raphson algorithm for the Pao-Sah voltage equation can converge to the correct solution with controllable high accuracy and computation speed comparable to that of the approximate explicit algorithms. An initial guess that ensures convergence to correct surface potential solution for the newly derived 2004-Sah voltage equation is proposed, which can be used to benchmark other approximate solutions. Comparisons among various approximate solutions with the iterative one are presented, both in wide gate voltage ranges (from strong accumulation to strong inversion) with coarse gate voltage step size and narrow gate voltage range near flatband with fine gate voltage step size.

- [1] Sah C-T, Pao H. The effects of fixed bulk charge on the characteristics of metal-oxide-semiconductor transistors. IEEE Trans Electron Dev 1965;13:393409.
- [2] Pao HC, Sah CT. Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron 1966;9(10):92737.
- [3] Miura-Mattausch M, Feldmann U, Rahm A, Bollu M, Savignac D. Unified complete MOSFET model for analysis of digital and analog circuits. IEEE Trans Comput-Aided Des Integr Circ Syst 1996;15(1):17.
- [4] van Langevelde R, Scholten A, Klaassen D. Recent enhancements of mos model 11. In: Proc Nanotech-WCM 2004; vol. 2. p. 605.
- [5] Gildenblat G, Wang H, Chen T-L, Gu X, Cai X. SP: an advanced surface-potential-based compact MOSFET model. IEEE J Solid-State Circ 2004;39(9):1394406.
- [6] van Langevelde R, Klaassen FM. An explicit surface-potential-based MOSFET model for circuit simulation. Solid-State Electron 2000;44(3):40918.
- [7] Zhou X, Chiah SB, Chandrasekaran K, See GH, Shangguan WZ, Pandey SM, Cheng M, Chu S, Hsia L-C. Unified regional charge-based versus surface-potential-based compact modeling approaches. In: Proc Nanotech-WCM 2005. p. 2530.
- [8] McAndrew C, Victory J. Accuracy of approximations in MOSFET charge models. IEEE Trans Electron Dev 2002;49(1):7281.
- [9] Wu W, Chen T-L, Gildenblat G, McAndrew CC. Physics-based mathematical conditioning of the MOSFET surface potential equation. IEEE Trans Electron Dev 2004;51(7):11969.
- [10] Sah C-T, A history of mos transistor compact modeling, In: Proc Nanotech WCM 2005. p. 34790.
- [11] Boothroyd A, Taraswicz S, Slaby C. MISNANa physically based continuous MOSFET model for CAD applications. IEEE Trans Comput-Aided Des Integr Circ Syst 1991;10(12):151229.
- [12] Rios R, Mudanai S, Shih W-K, Packan P. An e.cient surface potential solution algorithm for compact mosfet models. In: Electron devices meeting, 2004. IEDM technical digest. IEEE International, 2004, p. 7558.
- [13] Sah C-T, Noyce R, Shockley W, Carrier generalization recombination in p-n junctions and p-n junction characteristics. In: Proc. IRE, vol. 45, 1957, p. 122842.