Guojun Zhu, Student Member, IEEE, Xing Zhou, Senior Member, IEEE, Teck Seng Lee, Lay Kee Ang, Member, IEEE, Guan Huei See, Student Member, IEEE, Shihuan Lin, Yoke-King Chin, and Kin Leong Pey, Senior Member, IEEE

*IEEE Trans. Electron Devices*,
Vol.
56, No. 5, pp.
1100-1109, May 2009.

(Manuscript submitted August 6, 2008; revised
January 26, 2009.)

**Copyright | Abstract
| References | Citation | Back**

© *2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or* *for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.*

A comprehensive physics-based compact model for three-terminal undoped Schottky-barrier (SB) gate-all-around silicon nanowire MOSFETs is formulated based on a quasi-2-D surface-potential solution and the Miller–Good tunneling model. The energy-band model has accounted for the screening of the gate field by the electrons or holes, which has been largely missed in the literature. Although SB-MOSFETs are essentially ambipolar devices, we show that the separate modeling of electron and hole currents is simple yet accurately predicts the final ambipolar current. Thinner oxide thickness is confirmed to be beneficial to SB-MOSFETs for both ON- and OFF-state currents. However, smaller nanowire radius (or thinner body thickness) is found to be only beneficial to SB-MOSFETs with high SB heights (SBHs) despite the OFF-state current being reduced significantly. For SB-MOSFETs with low SBHs, the tunneling-current-density enhancement due to a smaller radius is not able to compensate the reduction in the contact size, which leads to a degradation of the “ON” current. The drift current in the channel is shown to be negligible in SB-MOSFETs and the tunneling/thermionic current through the SB represents the main current-limiting mechanism.

- [1] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, May 2006.
- [2] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain,” Proc. IEEE, vol. 56, no. 8, pp. 1400–1402, Aug. 1968.
- [3] Y. Taur, “An analytical solution to a double-gate MOSFET with undoped body,” IEEE Electron Device Lett., vol. 21, no. 5, pp. 245–247, May 2000.
- [4] D. Jimenez, B. Iniguez, J. Sune, L. F. Marsal, J. Parrares, J. Roig, and D. Flores, “Continuous analytical I–V model for surrounding-gate MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004.
- [5] J. Guo and M. S. Lundstrom, “A computational study of thin-body, double-gate, Schottky barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 1897–1902, Nov. 2002.
- [6] J. Guo, J. Wang, E. Polizzi, S. Datta, and M. Lundstrom, “Electrostatics of nanowire transistors,” IEEE Trans. Nanotechnology, vol. 2, no. 4, pp. 329–334, Dec. 2003.
- [7] M. Shin, “Computational study on the performance of multiple-gate nanowire Schottky-barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 737–742, Mar. 2008.
- [8] Z. H. Liu, C. Hu?J. H. Huang, T. Y. Chan, M. C. Jeng, P. K. Ko, and Y. C. Cheng, “Threshold voltage model for deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 86–95, Jan. 1993.
- [9] R. A. Vega, “On the modeling and design of Schottky field-effect transistors,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 866–874, Apr. 2006.
- [10] B. J. Xu, Z. L. Xia, X. Y. Liu, and R. Q. Han, “An analytical potential model of double-gate MOSFETs with Schottky source/drain,” in Proc. ICSICT, Beijing, China, Oct. 2006, pp. 1296–1298.
- [11] J. Kedzierski, P. Xuan, E. H. Anderson, J. Bokor, T.-J. King, and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” in IEDM Tech. Dig., Dec. 2000, pp. 57–60.
- [12] S. C. Miller, Jr. and R. H. Good, Jr., “A WKB-type approximation to the Schrödinger equation,” Phys. Rev., vol. 91, no. 1, pp. 174–179, Jul. 1953.
- [13] G. J. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, and S. H. Lin, “A compact model for undoped symmetric double-gate MOSFETs with Schottky-barrier source/drain,” in Proc. ESSDERC, Edinburgh, U.K., Sep. 2008, pp. 182–185.
- [14] G. J. Zhu, G. H. See, S. H. Lin, and X. Zhou, “‘Ground-referenced’ model for three-terminal symmetric double-gate MOSFETs with source/drain symmetry,” IEEE Trans. Electron Devices, vol. 55, no. 9, pp. 2526–2530, Sep. 2008.
- [15] S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Z. Shangguan, G. H. See, and S. M. Pandey, “Single-piece polycrystalline silicon accumulation/depletion/inversion model with implicit/explicit surface-potential solutions,” Appl. Phys. Lett., vol. 86, no. 20, p. 202111, May 2005.
- [16] R. H. Kingston and S. F. Neustadter, “Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor,” J. Appl. Phys., vol. 26, no. 6, pp. 718–720, Jun. 1955.
- [17] R. A. Vega, “Comparison study of tunneling models for Schottky field effect transistors and the effect of Schottky barrier lowering,” IEEE Trans. Electron Devices, vol. 53, no. 7, pp. 1593–1600, Jul. 2006.
- [18] L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J. R. Tucker, “Subthreshold and scaling of PtSi Schottky barrier MOSFETs,” Supperlattices Microstruct., vol. 28, no. 5/6, pp. 501–506, Nov. 2000.
- [19] S. Xiong, T.-J. King, and J. Bokor, “A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain,” IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1859–1867, Aug. 2005.
- [20] K. L. Jensen and M. Cahay, “General thermal-field emission equation,” Appl. Phys. Lett., vol. 88, no. 15, p. 154105, Apr. 2006.
- [21] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge: Cambridge Univ. Press, 1997, pp. 124–131.
- [22] R. F. Pierret, Semiconductor Device Fundamentals, Reading, MA: Addison-Wesley, 1996, p. 492.
- [23] D. Jiménez, X. Cartoixà, E. Miranda, J. Suñé, F. A. Chaves, and S. Roche, “A simple drain current model for Schottky-barrier carbon nanotube field effect transistors,” Nanotechnology, vol. 17, no. 3, p. 025201, Jan. 2007.
- [24] M. Zhang, J. Knoch, S. L. Zhang, S. Feste, M. Schroter, and S. Mantl, “Threshold voltage variation in SOI Schottky-barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 858–865, Mar. 2008.
- [25] L. Sub, D. Y. Li, S. D. Zhang, X. Y. Liu, Y. Wang, and R. Q. Han, “A planar asymmetric Schottky barrier source/drain structure for nano-scale MOSFETs,” Semicond. Sci. Technol., vol. 21, no. 5, pp. 608–611, May 2006.
- [26] J. Knoch and J. Appenzeller, “Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 81, no. 16, pp. 3082–3084, Oct. 2002.
- [27] J. Knoch, M. Zhang, S. Mantl, and J. Apenzeller, “On the performance of single-gated ultra-thin-body SOI Schottky-barrier MOSFETs,” IEEE Trans. Electron Device, vol. 53, no. 7, pp. 1669–1674, Jul. 2006.
- [28] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, “Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance,” IEEE Electron Device Lett., vol. EDL-8, no. 9, pp. 410–412, Sep. 1987.
- [29] Y. K. Chin, K. L. Pey, N. Singh, G. Q. Lo, L. Chan, L. H. Tan, and E. J. Tan, “Effect of nickel silicide intrusion on Schottky barrier nanowire MOSFET fabricated using top-down technology,” in Proc. SSDM, Ibaraki, Japan, Sep. 2008, pp. 436–437.
- [30] R. A. Vega and T.-J. K. Liu, “A comparative study of dopant-segregated Schottky and raised source/drain double-gate MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2665–2677, Oct. 2008.