Minimizing interference in satellite communications using transiently chaotic neural networks

Wen Liu, Lipo Wang*

College of Information Engineering, Xiangtan University, Xiangtan, Hunan, China
School of Electrical and Electronic Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore

ARTICLE INFO

Keywords:
FAP
Satellite communications
Neural network
Optimization

ABSTRACT

The frequency assignment problem (FAP) in satellite communications is solved with transiently chaotic neural networks (TCNN). The objective of this optimization problem is to minimize cochannel interference between two satellite systems by rearranging the frequency assignments. For an N-carrier–M-segment FAP problem, we construct a TCNN consisting of $N \times M$ neurons. The performance of the TCNN is demonstrated through solving a set of benchmark problems, where the TCNN finds comparative if not better solutions as compared to the existing algorithms.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

One important research direction in wireless communication is interference minimization, so as to guarantee a desired level of quality of service. The frequency rearrangement is an effective complement alongside the technique for reducing the interference itself. For both intersystem interference and intrasystem interference [1], frequency rearrangements take advantage of carrier interleaving and are effective in practical situations. Early efforts have focused on various analytical methods for evaluations of cochannel interference [2,3], rather than systematic methods for optimizing frequency assignments and for reducing cochannel interference. Among diverse formulations and objectives of frequency assignment problems (FAP) [4,5], we focus on frequency assignments in satellite communications in this paper. The objective of the satellite FAP is to minimize the cochannel interference between two satellite systems by rearranging the frequency assignments. This NP-complete problem is difficult to solve, especially for large-size problems, but is growing in importance, since we increasingly depend on satellites to fulfill our communications needs.

Some seminal work has been done in this area:

- Funabiki and Nishikawa [6] proposed a gradual neural network (GNN), where the cost optimization is achieved by a gradual expansion scheme and a binary neural network is in charge of constraints in the problem.
- Salcedo-Sanz et al. combined the Hopfield network with simulated annealing (HopSA) [7] and the genetic algorithm (NG) [8] to solve the problem.

On another hand, in the development history of modern computation technology, bio-inspired neural networks [9], due to their intrinsic operation functions, have played a very important role. Derived from some aspects of neurobiology and
adapted to integrated circuits, neural networks have been used widely in various fields such as optimization, linear and nonlinear programming, pattern recognition [10–12] and so on.

On the basis of Hopfield neural networks (HNN) [13,14], chaotic neural networks were presented by Nozawa [15, 16] through adding negative self-feedback connections into Hopfield networks. The simulation for several combinatorial optimization problems showed that chaotic search is efficient in approaching the global optimum or sub-optima. As a kind of complicated nonlinear dynamics, chaos has been widely investigated by not only mathematicians and physicists, but also engineers, economists, and scientists from various disciplines [17–19]. Chaotic dynamics have several special characteristics, such as:

1. a sensitivity to initial conditions,
2. determinism, as the system function is well defined,
3. long term unpredictability.

Chaotic dynamics [20] is a complex behavior which can be generated by a finite set of deterministic nonlinear equations with a simple system. Chaos is globally stable and locally unstable [21]. A lot of research in recent years has focused on developing techniques to harness chaos when it is undesirable or to generate chaos so that the useful function of a chaotic system can be utilized. Chen and Aihara [22] proposed a transiently chaotic neural network (TCNN) by introducing a decaying negative self-feedback. The dynamics of the new model are characterized as transient chaos. Numerical experiments on the traveling salesman problem (TSP) and the maintenance scheduling problem showed that the TCNN has high efficiency for converging to globally optimal solutions.

The TCNN, which is also known as chaotic simulated annealing [10], is not problem-specific but a powerful general method for addressing combinatorial optimization problems (COPs) [23–25]. With autonomous decreases of the self-feedback connection, TCNNs are more effective in solving COPs compared to the HNN. In this paper, we solve the FAP in satellite communications through the TCNN, and simulation results show that the performance of the TCNN is comparative with existing heuristics.

This paper is organized as follows. We review the TCNN in Section 2. The formulation of the TCNN on the FAP is described in Section 3. Parameter settings and simulation results are presented in Section 4. Finally, we conclude the contribution of this paper in Section 5.

2. Transiently chaotic neural networks

The TCNN [22] model is described as follows:

\[
x_{ij}(t) = \frac{1}{1 + e^{-y_{ij}(t)/\varepsilon}} \\
y_{ij}(t+1) = ky_{ij}(t) + \alpha \left[\sum_{p=1, p \neq i}^{N} \sum_{q=1, q \neq j}^{M} w_{ijpq}x_{pq}(t) + l_{ij} \right] - z(t) \left[x_{ij}(t) - l_0 \right] \\
z(t+1) = (1 - \beta)z(t)
\]

where the variables are:

- \(y_{ij}\) internal state of neuron \(ij\);
- \(x_{ij}\) output of neuron \(ij\);
- \(\varepsilon\) the steepness parameter of the transfer function (\(\varepsilon \geq 0\));
- \(k\) damping factor of the nerve membrane (\(0 \leq k \leq 1\));
- \(\alpha\) the positive scaling parameter for inputs;
- \(w_{ijpq}\) the weight of connection from neuron \(ij\) to neuron \(pq\);
- \(l_{ij}\) input bias of neuron \(ij\);
- \(z(t)\) self-feedback neuronal connection weight (\(z(t) \geq 0\));
- \(l_0\) positive parameter;
- \(\beta\) damping factor for the time-dependent neuronal self-coupling (\(0 \leq \beta \leq 1\)).

\(w_{ijpq}\) is confined to the following conditions [14]:

\[
\sum_{p=1, p \neq i}^{N} \sum_{q=1, q \neq j}^{M} w_{ijpq}x_{pq}(t) + l_{ij} = -\frac{\partial E}{\partial x_{ij}}
\]

where \(E\) denotes the energy function, which is designed to have the minimum value at the optimal solution of the combinatorial optimization problem. Weights of connection between neurons \((w_{ijpq})\) are derived by Eq. (4) so that the energy function will decrease monotonically as neurons update after the self-feedback interaction vanishes (\(z = 0\)).
3. Problem formulation

We use the FAP formulation given by [1] and used in [6-8]. As indicated in [1], the objective of the FAP includes two parts, i.e., minimization of the largest interference after reassignment and minimization of the total accumulated interference between systems.

We continue using the neural network formulation given by Funabiki and Nishikawa [6]. An N-carrier–M-segment FAP between two systems is formulated on an $N \times M$ neural network. At the end of the neural computing, neuron outputs will decide the assignment in the following way:

$$x_{ij} = \begin{cases} 1, & \text{then carrier } i \text{ is assigned to segment } j; \\ 0, & \text{no assignments}. \end{cases}$$

(5)

The energy function for the TCNN of the FAP [1, 6, 26] is defined as

$$E_1 = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} x_{ij} - 1 \right)^2.$$

(6)

This term is to ensure that every segment in system 2 must be assigned to one and at most one segment in system 1.

$$E_2 = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{p=1}^{N} \sum_{q=1}^{N} \sum_{c_j=1}^{j+c_j-1} x_{ij} x_{pq}.$$

(7)

This E_2 term is to ensure that all segments of one carrier in system 2 should be assigned to consecutive segments in system 1 in the same order. Here c_j denotes the carrier length of carrier i. If carrier i is assigned to segment j, any other carrier must not be assigned to segments from j to $(j + c_j - 1)$. The first segment of carrier p ($p \neq i$) should be assigned to the segment before $(j - c_p + 1)$ or after $(j + c_j - 1)$. As $(j - c_p + 1)$ may be negative and $(j + c_j - 1)$ may exceed the total number of the segments, i.e., M, the formulation in (7) has errors and produces program bugs during simulations. We revised the second term of the energy function as follows:

$$E_2' = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{p=1}^{N} \sum_{q=1}^{N} \sum_{c_j=1}^{j+c_j-1,M} \sum_{q=\max(j-c_p+1,1)}^{\min(j+c_j-1,M)} x_{ij} x_{pq}.$$

(8)

where $\max(x, y)$ is the larger value between (x, y) and $\min(x, y)$ is the smaller value between (x, y). The W_1 and W_2 terms are designed to guarantee that the solution is a feasible one.

We add the following convergence term into the energy function to force the neuron outputs to approach to 0 or 1 [26]:

$$E_3 = \sum_{i=1}^{N} \sum_{j=1}^{M} x_{ij} (1 - x_{ij}).$$

(9)

The E_4 term optimizes the interference after the frequency rearrangement.

$$E_4 = \sum_{i=1}^{N} \sum_{j=1}^{M} d_{ij} x_{ij}$$

(10)

where d_{ij} is the element on row i column j of the cost matrix D. Cost matrix $D = (d_{ij}, i = 1, \ldots, N; j = 1, \ldots, M)$ is computed from the interference matrix $E^{(ij)}$ [6]. If the carrier length for carrier i is 1, i.e., $c_i = 1$, then line i for carrier i in the cost matrix is the same as that in the interference matrix for carrier i. If $c_i > 1$, then we choose the largest value in the diagonal line for each j.

The total energy function is given by the summation of four parts $E_1, E_2', E_3,$ and E_4:

$$E = \frac{W_1}{2} \sum_{i=1}^{N} \left(\sum_{j=1}^{M} x_{ij} - 1 \right)^2 + \frac{W_2}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{p=1}^{N} \sum_{q=\max(j-c_p+1,1)}^{\min(j+c_j-1,M)} x_{ij} x_{pq}$$

$$+ \frac{W_3}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} x_{ij} (1 - x_{ij}) + \frac{W_4}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} d_{ij} x_{ij}.$$

(11)

where $W_i, i = 1, \ldots, 4$, are weighting coefficients. The choices of these parameters are based on the rule that all terms in the energy function should be comparable in magnitude, so that none of them dominates [5]. The balance of each term in the energy function is crucial to parameter selection.
The neuron output is continuous between 0 and 1. We convert the continuous output x_{ij} to discrete neuron output x_{ij}^0 as follows [27]:

$$x_{ij}^0 = \begin{cases} 1, & \text{if } x_{ij} > \frac{1}{NM} \sum_{p=1}^{N} \sum_{q=1}^{M} x_{pq}(t); \\ 0, & \text{otherwise.} \end{cases} \quad (12)$$

Substituting the energy function in (2) with (4) and (11), we obtain the network dynamics, i.e., the difference equation of the neural network as follows:

$$y_{ij}(t+1) = ky_{ij}(t) - W_1 \left(\sum_{q=1}^{M} x_{iq} - 1 \right) - \frac{W_2}{2} \sum_{p=1}^{N} \sum_{q=1}^{M} \min_{j=1,\ldots,M} \left(z(t) \left[x_{ip}(t) - I_0 \right] \right) - \frac{W_3}{2} (1 - 2x_{ij}) - \frac{W_4}{2} d_{ij} - z(t) \left[x_{ij}(t) - I_0 \right]. \quad (13)$$

4. Simulation results

We simulate the TCNN for the FAP on eight benchmarks. The specifications of the eight benchmarks are listed in Table 1. Benchmarks 1–5 are from [6] and 6–8 are from [7]. Once the difference of the energy function value between two iteration steps is smaller than a threshold (0.00001) in three consecutive steps or the number of iteration steps exceeds a predefined number (15 000 in our simulation), the iteration is terminated.

Initial inputs of neural networks $y_{ij}(0) (i = 1, \ldots, N, j = 1, \ldots, M)$ are randomly generated from $[-1, 1]$. Parameters for the neural network are chosen as follows [22]:

$$\varepsilon = 0.004, \quad k = 0.999, \quad \alpha = 0.0015, \quad \beta = 0.001, \quad z(0) = 0.1.$$

The weight coefficients of the energy function $W_i, i = 1, \ldots, 4$, are chosen as follows:

$$W_1 = 1.0, \quad W_2 = 1.0, \quad W_3 = 0.7, \quad W_4 = 0.0002.$$

It is necessary to tune these coefficients to obtain better performance of the TCNN. Along with the growing problem size, the value of the W_4 term increases, and so do the differences between the numerical values of the W_1 term and W_2, W_3 terms. Hence, we slightly decrease W_2 and W_3, but increase W_4 as the problem size grows.

To investigate the efficiency of the TCNN, the algorithm is run 1000 times with different randomly generated initial neuron states on each of eight benchmarks. Table 2 shows the results, including the best largest interference I_L, the rate for reaching the optimum (“Opt rate”), the average error from the optimal result (“Ave. error”), the convergence rate η (the ratio at which the neural network finds a feasible solution in 1000 runs), and the total interference I_T when the optimum of the largest interference is found. The average numbers of iteration steps T and standard deviations are also shown in this table. The convergence rate denotes the rate for the neural network finding a feasible solution at the end of the iterations.

The results show that the TCNN is effective in reducing the largest interference and total interference by rearranging the frequency assignment. Take problem 4 for example, which is a 10-carrier–32-segment FAP; the optimal largest interference is 64 with an optimal rate at 16.7%. The best total interference found by the TCNN is 919. The algorithm takes 2383 iteration steps on average, and the TCNN converges to a feasible solution in 87.5% of the 1000 random runs.

The comparison of the TCNN with the GNN [6] and the HopSA [7] is shown in Table 3. Results from the GNN and the HopSA are from references [6,7]. As the authors in [7] did not publish the average value, only the best result is included in Table 3. We show that the TCNN is comparable with the GNN and the HopSA in terms of the largest interference and outperforms them in terms of the total interference, especially on large-size problems.

Table 1

<table>
<thead>
<tr>
<th>#</th>
<th>Number of carriers N</th>
<th>Number of segments M</th>
<th>Range of carrier length</th>
<th>Range of interference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>06</td>
<td>1–2</td>
<td>5–55</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>06</td>
<td>1–2</td>
<td>1–9</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>32</td>
<td>1–8</td>
<td>1–10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>32</td>
<td>1–8</td>
<td>1–100</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>32</td>
<td>1–8</td>
<td>1–1000</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>60</td>
<td>1–8</td>
<td>1–50</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>100</td>
<td>1–8</td>
<td>1–100</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>200</td>
<td>1–8</td>
<td>1–1000</td>
</tr>
</tbody>
</table>

The comparison of the TCNN with the GNN [6] is shown in Table 3. Results from the GNN and the HopSA are from references [6,7]. As the authors in [7] did not publish the average value, only the best result is included in Table 3. We show that the TCNN is comparable with the GNN and the HopSA in terms of the largest interference and outperforms them in terms of the total interference, especially on large-size problems.
Table 2
The performance of the TCNN in eight instances. # denotes the instance number. \(l_1 \) is the best largest interference and \(l_T \) is the best total interference. "Opt. rate" stands for the rate for the TCNN reaching the optimum in the 1000 runs. "Ave. error" denotes the average error from the optimum. \(T \) is the average number of iteration steps. \(\eta \) is the convergence rate. "SD" stands for "standard deviation".

<table>
<thead>
<tr>
<th>#</th>
<th>(l_1)</th>
<th>Opt. rate (%)</th>
<th>Ave. error</th>
<th>(l_T)</th>
<th>(T): mean ± SD</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>32.1</td>
<td>5.4</td>
<td>100</td>
<td>426.5 ± 81</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>48.8</td>
<td>0.8</td>
<td>13</td>
<td>829.4 ± 117</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>21.6</td>
<td>1.3</td>
<td>85</td>
<td>2485 ± 153</td>
<td>96.4</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>16.7</td>
<td>10.5</td>
<td>919</td>
<td>2383 ± 264</td>
<td>87.5</td>
</tr>
<tr>
<td>5</td>
<td>697</td>
<td>18.6</td>
<td>53.8</td>
<td>7574</td>
<td>2342 ± 280</td>
<td>61.0</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>26.7</td>
<td>28.3</td>
<td>963</td>
<td>2651 ± 391</td>
<td>53.7</td>
</tr>
<tr>
<td>7</td>
<td>98</td>
<td>21.3</td>
<td>1.2</td>
<td>3889</td>
<td>3716 ± 389</td>
<td>67.1</td>
</tr>
<tr>
<td>8</td>
<td>994</td>
<td>27.4</td>
<td>3.9</td>
<td>60587</td>
<td>4839 ± 447</td>
<td>52.2</td>
</tr>
</tbody>
</table>

Table 3
Comparison of simulation results (largest interference and total interference) obtained by the TCNN, GNN and HopSA for instances 1 to 8. "SD" stands for "standard deviation".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Largest</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>100</td>
<td>100.8</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>13</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>85</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>880</td>
<td>982.0</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>640</td>
<td>8693</td>
<td>9413.9</td>
</tr>
<tr>
<td></td>
<td>817</td>
<td>6851</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>1218</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>1002</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>N/A</td>
<td>4633</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>4093</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>70355</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>988</td>
<td>61330</td>
<td></td>
</tr>
</tbody>
</table>

5. Conclusion
We solve the FAP in satellite communications through the TCNN. The objective of this NP-complete optimization problem is to minimize cochannel interference between two satellite systems by rearranging frequency assignments. The TCNN model consists of \(N \times M \) transiently chaotic neurons for an \(N \)-carrier–\(M \)-segment problem. With rich and complex dynamics, the TCNN has more chance of jumping out of local optima to reach the global optimum compared with the HNN. Simulation results on eight benchmark problems show that the TCNN can find better solutions compared to the previous methods, with low computational cost.

References