Multiplexed Model Predictive Control

K.V. Ling, J.M. Maciejowski, B. Wu

ekvling@ntu.edu.sg
jmm@eng.cam.ac.uk
bingfang_wu@pmail.ntu.edu.sg

Cambridge University NTU Singapore
Model Predictive Control (MPC)

Control by using on-line optimization (QP or LP)

- Increasingly used for fast systems
- *MPC on a Chip* or FPGA — size limits
- Reduce complexity of optimization problem
- Various decentralised schemes proposed — but all with synchronous control updates.
Multiplexed MPC — multi-input systems

Sequential updates of control inputs

Left: Conventional MPC, Right: Multiplexed MPC
Assumptions

• Only one input updated at each time step (at time kT/m), in sequence.

• Measurements of state vector are made at intervals of T/m.

• Current state x_k is known when deciding the update of each input. x_k is known to each controller.

• **Scheme 1:** Optimise all inputs over future horizon at each step. *Can be thought of as 1 controller.*

• **Scheme 2:** Optimise only one input over future horizon at each step. *Can be thought of as m controllers.*
Update one input at a time

Plant: If only one input is updated at each k then

\[x_{k+1} = A x_k + \sum_{j=1}^{m} B_j \Delta u_{j,k} = A x_k + B_{\sigma(k)} \Delta \tilde{u}_k \]

where

\[\sigma(k) = (k \mod m) + 1 \]

is a **periodic switching function:** \(\sigma(k + m) = \sigma(k) \)

So multi-input LTI plant looks like **periodic single-input** plant.
Stability of Scheme 1

Cost function:

\[J_k = \sum_{i=0}^{\infty} \left(\| x_{k+i+1} \|_q^2 + \| \Delta u_{k+i} \|_r^2 \right) \]

\[= \sum_{i=0}^{N-1} \left(\| x_{k+i+1} \|_q^2 + \| \Delta u_{k+i} \|_r^2 \right) + x_{k+N+1}^T P_{k+N+1} x_{k+N+1} \]

for suitable \(P_{k+N+1} \).

Infinite horizon ⇒ closed-loop stable (if feasible).

Constraints can be imposed during first \(N \) steps of horizon.
Periodic Riccati Equation

\[P_k = A^T P_{k+1} A - \]
\[A^T P_{k+1} B_{\sigma(k)} (B_{\sigma(k)}^T P_{k+1} B_{\sigma(k)} + r)^{-1} B_{\sigma(k)}^T P_{k+1} A + q \]

This converges to a periodic solution (given suitable final condition).

State feedback — after end of prediction horizon:

\[K_k = -(B_{\sigma(k)}^T P_{k+1} B_{\sigma(k)} + r)^{-1} B_{\sigma(k)}^T P_{k+1} A \]

Stability of Scheme 1 follows easily — if feasible.
Scheme 2

- Controller j decides future sequence of j’th input only.
- Other inputs are treated as known disturbances.
- Assume that controller j knows the future plans of the other controllers, and assumes $\Delta u_{\sigma(k),k+i} = K_{\sigma(k)}x_{k+i}$ beyond the planning horizon.
- Stability proof idea: J_k is a Lyapunov function, if problem is feasible.
\[\Delta \vec{U}_k = \begin{bmatrix} \Delta u_{1,k} \\ \Delta u_{2,k+1} \\ \Delta u_{1,k+2} \\ \vdots \\ \Delta u_{1,k+2N-4} \\ \Delta u_{2,k+2N-3} \\ \Delta u_{1,k+2(N-1)} \\ K_2 x_{k+2N-1} \\ K_1 x_{k+2N} \\ K_2 x_{k+2N+1} \\ K_1 x_{k+2N+2} \\ \vdots \end{bmatrix}, \quad \Delta \vec{U}_{k+1} = \begin{bmatrix} \Delta u_{2,k+1} \\ \Delta u_{1,k+2} \\ \Delta u_{2,k+3} \\ \vdots \\ \Delta u_{2,k+2N-3} \\ \Delta u_{1,k+2(N-1)} \\ \Delta u_{2,k+2N-1} \\ K_2 x_{k+2N} \\ K_2 x_{k+2N+1} \\ K_1 x_{k+2N+2} \\ \vdots \end{bmatrix} \]

Pattern of control updates in Scheme 2.
Entries in bold get updated.
Scheme 2: How to compute the cost?

Assume that, after end of prediction horizon (of length N):

$$ \Delta u_{\sigma(k),k+i} = K_{\sigma(k)} x_{k+i} $$

Let

$$ \Phi_j = A + B_j K_j $$

Monodromy matrices:

$$ \Psi_1 = \Phi_m \Phi_{m-1} \cdots \Phi_2 \Phi_1 $$

$$ \Psi_2 = \Phi_1 \Phi_m \cdots \Phi_3 \Phi_2 $$

$$ \vdots $$

$$ \Psi_m = \Phi_{m-1} \Phi_{m-2} \cdots \Phi_1 \Phi_m $$

Stability condition: $|\lambda_j(\Psi_i)| < 1$ for all j, for any i.
Scheme 2: Cost function J_k ...

Paper has errors here! Details wrong, Idea OK.

At time k, controller $\sigma(k)$ evaluates J_k as:

$$J_k = \sum_{i=0}^{m(N-1)} \left(\|x_{k+i+1}\|_q^2 + \|\Delta u_{k+i}\|_r^2 \right) + x_{k+m(N-1)+1}^T P_{\sigma(k)} x_{k+m(N-1)+1}$$

What is $P_{\sigma(k)}$?

The "tail" of J_k is

$$J_{k+m(N-1)+1} = \sum_{i=m(N-1)+1}^{\infty} \left(\|x_{k+i+1}\|_q^2 + \|\Delta u_{k+i}\|_r^2 \right)$$

$$= \sum_{i=2}^{m} \|x_{k+m(N-1)+i}\|_q^2 + \sum_{i=N-1}^{\infty} \left(\|x_{k+m(i+1)+1}\|_Q^2 + \|\Delta U_{k+mi+1}\|_R^2 \right)$$
where

\[\mathbf{x}_k = \begin{bmatrix} x_k \\ x_{k+1} \\ \vdots \\ x_{k+m-1} \end{bmatrix}, \quad \Delta \mathbf{u}_k = \begin{bmatrix} \Delta u_{\sigma(k),k} \\ \Delta u_{\sigma(k+1),k+1} \\ \vdots \\ \Delta u_{\sigma(k+m-1),k+m-1} \end{bmatrix} \]

and \(Q = \text{diag}[q, \ldots, q], \; R = \text{diag}[r, \ldots, r] \).

State transition equation — if \(i > m(N - 1) \):

\[\mathbf{x}_{k+1+m(N+i+1)} = \begin{bmatrix} \Psi_{\sigma(k+1)} & 0 & \cdots & 0 \\ 0 & \Psi_{\sigma(k+2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Psi_{\sigma(k)} \end{bmatrix} \mathbf{x}_{k+1+m(N+i)} \]
Recall:

If $x_{i+1} = \Phi x_i$ and $u_i = K x_i$ and $J = \sum_{i=0}^{\infty} (\|x_{i+1}\|_Q^2 + \|u_i\|_R^2)$
then $J = x_0^T P x_0$ where $P = \Phi^T P \Phi + \Phi^T Q \Phi + K^T R K$.

Applying this to our problem:

$$J_{k+m(N-1)+1} = \mathcal{X}^{T}_{k+m(N-1)+1} \times \text{diag}[\Pi_{\sigma(k+1)}, \ldots, \Pi_{\sigma(k+m)}] \mathcal{X}_{k+m(N-1)+1}$$

where

$$\Pi_{\ell} = \Psi_{\ell}^T \Pi_{\ell} \Psi_{\ell} + \Psi_{\ell}^T q \Psi_{\ell} + K_{\ell}^T r K_{\ell} \quad \text{for} \; \ell = 1, 2, \ldots, m$$
But

\[x_{k+m(N-1)+2} = \Phi_{\sigma(k+1)} x_{k+m(N-1)+1} \]
\[x_{k+m(N-1)+3} = \Phi_{\sigma(k+2)} \Phi_{\sigma(k+1)} x_{k+m(N-1)+1} \]

etc

so we obtain

\[J_{k+m(N-1)+1} = x_{k+m(N-1)+1}^T P_{\sigma(k)} x_{k+m(N-1)+1} \]

where

\[P_{\sigma(k)} = \Pi_{\sigma(k+1)} + \Phi_{\sigma(k+1)}^T \Pi_{\sigma(k+2)} \Phi_{\sigma(k+1)} + \cdots \]
\[+ \left[\Phi_{\sigma(k+1)}^T \cdots \Phi_{\sigma(k+m-1)}^T \Pi_{\sigma(k+m)} \Phi_{\sigma(k+m-1)} \cdots \Phi_{\sigma(k+1)} \right] \]
Scheme 2 stability proof

Standard monotonically decreasing cost argument:

• If, at step $k + 1$, controller $\sigma(k + 1)$ leaves the moves $\Delta u_{\sigma(k+1),k+1}, \ldots, \Delta u_{\sigma(k+1),k+m(N-1)+1}$ unchanged, then

$$J_{k+1} = J_k^o - \|x_{k+1}\|_q^2 - \|\Delta u_k\|_r^2 < J_k^o$$

• But $J_{k+1}^o \leq J_{k+1}$ by optimality.

• Hence $J_{k+1}^o \leq J_k^o$, (equality only if $x_k = 0$).

Hence J_k^o is a Lyapunov function.

Scheme 2 is stable — if feasible.
Example

\[
\begin{bmatrix}
y_1(s) \\
y_2(s)
\end{bmatrix} = \begin{bmatrix}
\frac{1}{7s+1} & \frac{1}{3s+1} \\
\frac{2}{8s+1} & \frac{1}{4s+1}
\end{bmatrix} \begin{bmatrix}
u_1(s) \\
u_2(s)
\end{bmatrix}
\]

\[m = 2, \quad T = 1 \text{ sec}, \quad T/m = 0.5 \text{ sec.}\]

No constraints.

Step disturbance on \(y_1 \) at \(t = 70.1 \text{ sec} \)
Step disturbance on \(y_2 \) at \(t = 140.1 \text{ sec} \)
Conclusions

- Multiplexed MPC updates one input at a time.
- *Do something sooner* can be better than *Do optimal thing later*.
- Extension of Chmielewski-Manousiouthakis approach using periodic systems theory.
- Constraints, feasibility etc not addressed yet.
- Complexity reduction requires constraint decoupling too.
- **Generalisations:** Unequal intervals; Groups of inputs.