pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging

Article in Nano Research - August 2018
DOI: 10.1007/s12274-018-2175-9

14 authors, including:

Zhimin Wang
Nanyang Technological University
17 PUBLICATIONS 109 CITATIONS

Paul Kumar Upputuri
Nanyang Technological University
68 PUBLICATIONS 837 CITATIONS

Xu Zhen
Nanyang Technological University
59 PUBLICATIONS 858 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Triphenylphosphonium Derivatives as Anti-tumour Prodrugs View project
- Biomedical imaging using microfluidics- based double emulsions as contrast agents View project
pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging

Zhemin Wang, Paul Kumar Upputuri, Xu Zhen, Ruochong Zhang, Yuyan Jiang, Xiangzhao Ai, Zhijun Zhang, Ming Hu, Zhenyu Meng, Yunpeng Lu, Yuanjing Zheng, Kanyi Pu, Manojit Pramanik, and Bengang Xing

1 Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
2 School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637459, Singapore
3 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Received: 12 June 2018 / Revised: 12 August 2018 / Accepted: 13 August 2018

ABSTRACT

The emerging technique of photoacoustic imaging, especially in the near infra-red (NIR) window, permits high resolution, deep-penetration, clinically reliable sensing. However, few contrast agents are available that can specifically respond to intricate biological environments, and which are biodegradable and biocompatible. Herein, we introduce a new class of pH-sensitive organic photoacoustic contrast agent that operates in the second NIR window (NIR-II, 960–1,700 nm), which is derived from the self-assembled charge-transfer nanocomplex (CTN) by 3,3',5,5'-tetramethylbenzidine (TMB) and its dication structure (TMB\(^{2+}\)). The unique NIR-II-responsive CTN can specifically respond to pH change in the physiological range and allows noninvasive and sensitive visualization of the tumor acidic microenvironment (e.g. at pH 5) in mice with higher signal-to-noise ratio. The CTN is biodegradable under physiological conditions (e.g. pH 7.4), which alleviates the biosafety concern of nanoparticle accumulation in vivo. These results clearly show the potential of the TMB/TMB\(^{2+}\)-based CTN as a promising pH-activated and biodegradable molecular probe for specific tumor photoacoustic imaging in the NIR-II region.

KEYWORDS

charge-transfer nanocomplex, second near-infrared window, photoacoustic imaging, pH-sensitive, biodegradable, tumor acidic microenvironment

1 Introduction

Photoacoustic imaging (PAI) is an emerging hybrid biomedical imaging technique that provides reliable sensing at penetration depths and spatial resolutions that are close to practical requirements. These attributes may overcome the limitations of conventional optical imaging, such as low penetration and light diffusion, and ultrasonic imaging (e.g. low contrast). PAI thus is potentially valuable for clinical translation [1–6].

Despite this potential, conventional PAI for numerous biomedical applications based on intrinsic or extrinsic contrasts are still flawed due to the overwhelming light scattering of biological tissues and serious nonspecific PA signal readout [1, 7]. Remarkable efforts to technologically improve the quality of PAI have included the engineering of more sensitive photoacoustic setups and the development of more efficient contrast agents [8–10]. The development of the commercially available Q-switched Nd:YAG pulse-laser (1,064 nm) and new second near-infra-red (NIR) window (NIR-II, 960–1,700 nm) light-absorbing PA contrast materials, including silver nanoparticles, copper sulfide nanoparticles, phosphorus phthalocyanine, and semiconducting polymer nanoplatforms, allow photoacoustic sensing in the NIR-II window. NIR-II PA imaging has received worthy attention in deep tissue, brain vasculature, and tumor detection due to its\' centimeter-deep penetration and higher signal-to-noise ratio (SNR) [11–18]. However, these NIR-II PA contrast agents still face challenges for in vivo applications, since the endogenous NIR-II absorption and non-targeted contrast extravasation dramatically affect the imaging sensitivity and specificity. In addition, the biological incompatibility and long-term accumulation of these PA contrast agents have raised concerns for their biosafety in practice [9, 11]. Some NIR-II contrast agents have been designed for targeted PA imaging by conjugation with targeting moieties, such as antibodies, which are biodegradable and biocompatible. Herein, we introduce a new class of pH-sensitive organic photoacoustic contrast agent that can potentially realize successful clinical translations.

Charge-transfer complex (CTC) materials are assemblies of charge-donating (D) and charge-accepting (A) molecules that have been intensely studied for several decades due to their wide range of properties, such as the anisotropic conductivity, photoconductivity, paramagnetism, ferroelectricity, and ambipolar transport [24–30]. Extensive investigations of intramolecular CT (ICT) have shown that the excitation energy of the transitional state can contribute to the formation of typical CT bands in the visible and NIR regions in CTC materials [24–30]. The unique NIR-II-responsive CTN can specifically respond to pH change in the physiological range and allows noninvasive and sensitive visualization of the tumor acidic microenvironment (e.g. at pH 5) in mice with higher signal-to-noise ratio. The CTN is biodegradable under physiological conditions (e.g. pH 7.4), which alleviates the biosafety concern of nanoparticle accumulation in vivo. These results clearly show the potential of the TMB/TMB\(^{2+}\)-based CTN as a promising pH-activated and biodegradable molecular probe for specific tumor photoacoustic imaging in the NIR-II region.

KEYWORDS

charge-transfer nanocomplex, second near-infrared window, photoacoustic imaging, pH-sensitive, biodegradable, tumor acidic microenvironment
TMB and silver nitrate were purchased from Sigma-Aldrich. Unless otherwise stated, all commercial available reagents for synthesis and assays were used without further purification. CTN nanofibers were prepared and characterized according to a previously reported method with slight modifications [48]. Typically, 1 mL of AgNO₃ aqueous solutions with different concentrations (1–20 mM) were added to 2 mL of TMB (10 mM) ethanol solution with vigorous stirring at room temperature. The color of the reaction mixture started to change from green to dark purple after the reaction had proceeded for 2 h. The uppermost purple CTN nanofibers were collected by centrifugation and then washed twice with deionized (DI) water for the subsequent experiments. The gray, precipitated Ag nanoparticles at the bottom were removed. Ultraviolet–visible (UV–Vis)–NIR absorption spectra were measured using a Lambda 950 spectrometer (Perkin Elmer). CTN morphology was investigated using a JEOL JSM-6700F field emission scanning electron microscope. A Bruker D8 X-ray diffraction (XRD) system, Perkin-Elmer model PHI 5600 X-ray photoelectron spectroscopy (XPS) system, and a Bruker Vertex 80v vacuum Fourier-transform infrared spectrometer were used for structure analyses.

2.2 Cell culture and cytotoxicity test

NIH/3T3 mouse embry oblast cells and RAW 264.7 murine macrophage cells were purchased from American Type Culture Collection. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 10% calf bovine serum (CBS) containing penicillin (100 IU/mL) and streptomycin (100 μg/mL) and maintained in an atmosphere containing 5% CO₂ and 95% humidified air at 37 °C. For the cytotoxicity test of CTN, both cell lines were independently seeded in 96-well plates (100 μL containing approximately 8,000 cells/well) and incubated for 24 h. Different concentrations of CTN were added to the cell culture medium, then the cells were incubated for 24 h. The medium was removed and washed with phosphate buffered saline (PBS). Fresh cell culture medium containing TOX8 was then added to wells and plates were incubated for 3 h. The fluorescence at 590 nm was measured using a Tecan Infinite M200 microplate reader at an excitation wavelength of 560 nm. Cell viability was expressed as the ratio of the fluorescence of cells incubated with CTN to that of control cells.

2.3 In vitro PA signal test of CTN

The laser source used is from an optical parametric oscillator tunable (700–1,200 nm) wavelength and fiber coupling. The output light from the fiber was collimated and focused by a condenser lens on the sample with an approximate spot size diameter of 500 μm. A beam splitter and photodiode were utilized to monitor the laser intensity variation. During the experiment, the maximum permissible exposure was well within the ANSI standard. An ultrasound transducer (V303SU, Olympus) with 2 MHz central frequency was placed close to the sample to detect the PA resonance signals. The transducer was immersed in a water tank for optimum optical and acoustic coupling. The PA resonance signals were first amplified by a low-noise amplifier (5662, Olympus) with a 54 dB gain, and then recorded using an oscilloscope (LeCroy) with 500 MS/s sampling rate. Peak-to-peak voltage of the PA signals were normalized with the laser energy at each wavelength and plotted against the wavelength to generate the PA spectrum of CTN.

For the concentration-dependent 1,064 nm PA testing of CTN, a Q-switched Nd:YAG pump laser was used as the laser source of PA instrumentation. CTN solutions or fresh mouse blood were placed inside a low-density polyethylene (LDPE) tube with an inner diameter of 0.59 mm and outer diameter of 0.78 mm. An LDPE tube containing samples and a single-element ultrasound transducer (UST, V323-SU/2.25 MHz, 13 mm active area, and 70% nominal bandwidth; Panametrics) were both immersed in water for coupling of PA signals to the UST. The LDPE tube was irradiated with laser pulses at a wavelength of 1,064 nm. PA signals were collected by the UST, amplified with a gain of 50 dB, and subsequently band pass filtered (1–10 MHz) by a pulse/receiver unit (5072PR, Olympus-NDT). Finally, the output signals from the pulse/receiver unit were digitized with a data acquisition card (DAQ, GaGe, Compassuscope 4227) operated at 25 MHz and the acquired signals were stored in the computer. PA signals of with different concentrations of CTN at 1,064 nm were measured and plotted.
and filter unit (A/F, 5072, Olympus NDT) and then digitized. The signals were recorded using a PC with a 25 Ms/s data acquisition (DAQ) card from GaGe (Compuscope 4227). Finally, the acquired PA signals were used to reconstruct the tumor image using a delay-and-sum back projection algorithm.

2.5 In vivo NIR-II PAI of tumor

In vivo PAI of tumor-bearing female NCr nude mice was acquired by the homemade 1,064 nm PAI system mentioned above. Animal experiments were performed in accordance with the approved guidelines and regulations, and were approved by the institutional Animal Care and Use committee of Nanyang Technological University, Singapore (Animal Protocol Number ARF-SBS/NIE-A0263). 4T1 xenograft tumor cells (2 × 10⁶) suspended in 0.2 mL of DMEM containing 10% fetal bovine serum (FBS) and 1% antibiotics were subcutaneously injected into one side of the backs of the mice. After two weeks, the tumor-bearing mice were used for 1,064 nm PA imaging. A layer of ultrasonic coupling gel was applied on each mouse's skin at the tumor area. The mouse was subsequently anesthetized and placed into the PA setup with the tumor protruding above to the water tank through a hole that was sealed by transparent polyethylene film. The tumor-bearing mouse and the control mouse without tumor were monitored and imaged before and after intratumoral or subcutaneous injection of CTN (1 mg/mL, 200 μL per mouse, n = 3) using the 1,064 nm laser with a power intensity of 5.5 mJ/cm². At different post injection times, PA images were acquired and reconstructed for the tumor and the normal tissue.

3 Results and discussion

3.1 Preparation and characterization of CTN

The CTN material used was prepared as shown in Fig. 1(a) [48]. The diameter optimization was achieved through alteration of the relative concentration of the substrates (TMB and AgNO₃), wherein the intermolecular charge-transfer degree of the π-conjugated push–pull system was controllable. As shown in Fig. 1(c) and Fig. S1 in the Electronic Supplementary Material (ESM), the diameters of the prepared CTN varied from 418.4 ± 15.4 to 79.6 ± 2.2 nm and the optimal sized CTN (< 100 nm) was chosen as the candidate for further investigation. The XRD analysis (Fig. S2(a) in the ESM) indicated that the peaks at 10.5, 17.4, and the broad peak could be ascribed to the formation of organic CTN by the charge-transfer process between TMB and TMB++. The XPS data presented in Fig. S2(b) show the occurrence of carbon, oxygen, and nitrogen signals. The peaks at 401.9 and 399.8 eV in the N1s high-resolution XPS spectrum (Fig. 1(d)) could be assigned to the protonated imine TMB++ and the neutral amine TMB of CTN. Differences in the FTIR spectra (Fig. S2(c) in the ESM) between TMB and CTN could also be direct evidence for the formation of CTN containing the typical phenyl ring of TMB and C=N bond of quinonediimine, like the cation (TMB++). To further validate the charge-transfer of CTN, we carried out computational analysis using Gaussian 09 under the HF/6-31+G(d,p) scheme [49]. The simulated molecular orbitals in Fig. 1(e) showed that the energy level of the lowest uncoupled molecular orbital of TMB++ (−7.0341 eV) was lower than that of TMB with an energy-gap of 0.0468 eV, which demonstrated the possibility of the CT process from TMB to TMB++. The collective results deduced the structure and charge-transfer mechanism of the prepared CTN.

3.2 In vitro photoacoustic performance of CTN

As shown in Fig. 2(a), the optical spectrum of the CTN aqueous solution exhibited a broadband absorption ranging from the NIR-I to NIR-II window, which can be attributed to the CT bands of TMB/TMB++-based CTN. Most importantly, this pH-sensitive CTN was highly stable in an acidic environment (PBS, pH 5.0) for 72 h, while it was gradually degraded under normal physiological conditions.

Figure 1 Preparation and characterization of CTN. (a) Schematic illustration of CTN formation, degradation, and in vivo NIR-II PA imaging. (b) UV–Vis–NIR absorption spectra of CTN in different pH conditions. (c) SEM images and diameter distribution of CTN. (d) High resolution XPS spectrum of CTN (N1s). (e) Frontier molecular orbitals and relative energy level of TMB and TMB++.
conditions (pH 7.4) (Figs. 1(b) and 2(b)). Such a pH-responsive phenomenon of CTN could likely be attributed to the different charge-transfer efficiency between TMB and TMB++ upon their exposure to varying pH conditions [50, 51]. In addition, the potential changes of the CTN structure in different pH environments were monitored by scanning electron microscopy (SEM) after incubation with different buffers after 24 h (Fig. 2(b)). The images clearly showed that the CTN nanofibers were almost degraded in pH 7.4 PBS buffer, whereas no morphological changes were observed in the acidic condition. Therefore, the pH-sensitivity and biodegradability of such CTN could not only act as a valuable feature for a specific response to the critical parameter of pH in physiological and pathological processes (e.g., tumor acidity), but also as a property that will alleviate the health risk caused by nanoparticle enrichment in vivo [52, 53]. Moreover, CTN was incubated with two different cell lines, HEK293 human embryonic kidney cells and RAW 264.7 mouse macrophages for 24 h. No statistical difference in the cell viability was found with either cell type, even at concentrations up to 500 μg/mL (Fig. 2(c)), which indicated good biosafety for potential biological applications. We further evaluated the feasibility of CTN as an NIR-II PA contrast agent. Considering the lower native absorption from the tissue components in the NIR-II region, as a proof of concept we mainly monitored the PA signal of CTN with 1,064 nm laser excitation. The PA spectra in an aqueous solution were collected and normalized by a tunable pulse-laser illumination from 700 to 1,200 nm (Fig. 2(d)). The data suggested that CTN is suitable for NIR-II PA imaging due to the excellent photon-caustic converting efficacy [11]. In addition, to reasonably optimize the amount of CTN used for efficient PA imaging contrast at 1,064 nm, we determined through comparison with the PA signal of fresh mouse blood and found that the critical concentration of CTN was 0.1 mg/mL (Fig. 2(e)). Importantly, the linear correlation between the concentration of CTN and PA intensity at 1,064 nm was observed in Fig. 2(f) with $R^2 = 0.995$, indicating the applicability for the potential of PAI quantification. These results suggest that CTN could act as an attractive contrast candidate for NIR-II PA bioimaging and sensing purposes.

3.3 Deep tissue PAI

To validate the availability of CTN for in vivo application, we first tested the penetrating ability of 1,064 nm PAI with a tissue mimicking phantom made of agar gel embedded with CTN (Fig. 3(a)),
in which chicken breast muscles were arranged to achieve different thicknesses (Fig. S3 in the ESM). The PA images were obtained by increasing tissue depths from 0 to 5 cm. As shown in Fig. 3(b), all the agar gel cylinders with the three different concentrations (0.1, 0.5, and 1 mg/mL) of CTN were clearly visualized, indicating the promising PA contrast of CTN and the superior feature of NIR-II imaging. However, the signal-to-noise ratio of the reconstructed images gradually decreased with the increased depths of the chicken breast tissues (Fig. 3(c) and Fig. S4 in the ESM). It is noteworthy that the PA penetration of 0.1 mg/mL CTN was able to reach a tissue depth of approximately 3 cm, while the signal of agar gel objects with higher concentrations (CTN, 0.5 and 1 mg/mL) remained detectable even up to 5 cm tissue depth. The data indicated the advantages of NIR-II PAI for deep penetration and high-contrast in the particle bioimaging trials.

3.4 In vivo PAI of tumor
To further examine the imaging capability of CTN for tumor sensing in vivo, PA scanning of 4T1 tumor-bearing mice was conducted using the homemade PA setup under pulsed laser excitation wavelength of 1,064 nm (Fig. S5 in the ESM) [54]. Two hundred microliters of CTN (1 mg/mL) was intratumorally injected into the tumor-bearing mice. The control mice were treated with the same amount of CTN by subcutaneous injection. As shown in Fig. 4, prior to the injection of CTN, only PA signals of the background noise were observed in both tumor-bearing and control mice. The noise was derived from the tissues' absorption in NIR-II region. Five minutes after CTN injection, PA signals were obvious in the tumor area and normal tissue, with no significant difference at this stage. The PA amplitudes in the tumor became markedly enhanced over time, which was attributed to the CTN response in the acidic tumor microenvironment. In contrast, the mean PA intensity at the focused region of the control mice was gradually weakened, mainly due to the degradation of CTN under the normal physiological condition. At 4 h post-injection, an extremely significant difference (p < 0.001) of PA intensity was observed between tumor and normal tissue. After 24 h, there were no detectable PA signals in control mice, whereas the tumor-bearing mice still showed significant PA signals, which corresponded to the pH-sensitivity investigations of CTN in vitro (Fig. 2(b)). The results demonstrated the capability of CTN as a sensitive NIR-II PA probe for tumor imaging.

4 Conclusions
We successfully developed a novel, organic self-assembled, pH-sensitive, and biodegradable PA CTN probe for NIR-II PA tumor imaging in mice. The results demonstrated the suitability of CTN for in vivo NIR-II PA imaging with good contrast and deep penetration up to 5 cm due to the strong CT band in the NIR-II region where the tissue background was minimal. The self-assembled CTNs were pH-responsive and the PA signal was significantly enhanced in acidic conditions compared to neutral conditions, which allows specific sensing of the tumor acidic microenvironment. More important, the biodegradable feature of CTN in a physiological condition (pH 7.4) and the preliminary cell viability evaluation indicated a negligible biosafety concern. Biosafety is particularly vital for in vivo imaging applications. Refinements of this CTN to improve the sensitivity or specific targeting, as well as functional diversification, will allow for better biocompatibility and utility in vivo. Overall, this TMB/TMB++-based organic CTN will serve as a new class of NIR-II PA contrast agent and also as an pH-activatable probe for tumor imaging in mice. Given the many merits of CTN, we believe that such NIR-II light absorbing charge-transfer nano-complexes hold great potential for further advancing PA imaging in biology and medicine.

Acknowledgements
B. G. X. acknowledges the financial supports from NTU-AIT-MUV NAM/16001, RG110/16 (S), (RG 11/13) and (RG 35/15) awarded in Nanyang Technological University and the National Natural Science Foundation of China (NSFC) (No. 51628201). M. P. thanks the Singapore Ministry of Health’s National Medical Research Council (NMRC/OFIRG/0005/2016: M4062012) for financial support. K. Y. P. thanks Nanyang Technological University (Start-Up Grant NTU-SUG: M4081627.120) and Singapore Ministry of Education (Academic Research Fund Tier 1 RG133/15M4011559 and Academic Research Fund Tier 2 MOE2016-T2-1-098) for financial support.

Electronic Supplementary Material: Supplementary material (computational details, SEM, FTIR and XRD measurements, deep tissue photoacoustic signal plot, and diagram of 1,064 nm photoacoustic imaging set up) is available in the online version of this article at https://doi.org/10.1007/s12274-018-2175-9.

References

