Hashtag Recommendation for Hyperlinked Tweets

Surendra Sedhai, Aixin Sun
School of Computer Engineering, Nanyang Technological University, Singapore
SUREN@E.NTU.EDU.SG ASUN@NTU.EDU.SG

Introduction

- **Hyperlinked tweet**: a tweet containing one or more hyperlinks to external documents.
- **Hashtag recommendation for hyperlinked tweets**?
 - Presence of hyperlink in a tweet is a strong indication of tweet being more informative.
 - Functions of hashtags for providing right context to interpret the tweets, tweet categorization, and tweet promotion, can be extended to the linked documents.
- **Recommendation in two phases**
 - Candidate hashtag selection
 - Recommendation by learning to rank

Candidate Hashtag Selection

- **Candidate hashtag selection**: selecting a subset of hashtags from all existing hashtags that have been used to annotate any of the observed tweets with or without hyperlinks.
- **Selected through five schemes**
 - Top 20 most voted hashtags from the top 50 most similar tweets.
 - Top 20 most voted hashtags from the top 50 most similar webpages.
 - Top 20 most used hashtags for tweets from the domain of the hyperlink.
 - Top 20 highly ranked hashtags based on **named entities** by Random Walk with Restart (RWR) model.
 - Top 20 highly scored hashtags based on **named entities** by Language Translation (LT) model.
- **Entity-hashtag graph and RWR**

\[P(h_i|e_i), P(e_i|h_i) \]: the number of times a hashtag \(h_i \) is used to annotate a tweet linking to a document containing a named entity \(e_i \), divided by the frequencies of \(e_i \) and \(h_i \).

\[P(h_i|h_j) \]: asymmetric hashtag co-occurrence

- **Language Translation model**: named entities and hashtags as descriptions of the same content in two different languages: \(\text{Score}(h_i) = \sum_{e_i \in N} P(h_i|e_i) \), where \(N_e \) is the named entities in the linked webpage of the tweet.

Recommendation by Learning To Rank

- **Pairwise Learning to Rank**:
 - Learning: Let \(h^+ \) be a positive candidate hashtag and \(h^- \) be a negative candidate hashtag; then the pair \(\langle h^+, h^- \rangle \) is a positive instance and \(\langle h^-, h^+ \rangle \) is a negative instance in learning the model.
 - Recommendation: Let \(H \) be the set of candidate hashtags. The recommendation score of candidate hashtag \(h_i \): \(f(h_i) = \sum_{h_j \in H, h_j \neq h_i} I(h_i, h_j) \), where \(I(h_i, h_j) = 1 \) if \((h_i, h_j) \) is classified as positive and 0 otherwise.
- **Two sets of features**:
 - Five binary features: set to 1 if the hashtag is selected by each of the 5 selection schemes.

Dataset

- **Data collection**: Two months (May 1 to Jun 30, 2013) of sampled tweets using Twitter streaming API guided by hashtags.org: 24 million tweets published by 11.9 million users, containing 6.9 million links with 3.4 million distinct URLs; 1.37 million downloaded pages are in English.
- **Training and Testing**: 15,000 randomly selected hyperlinked tweets from the first 40 days for training. 7,000 hyperlinked tweets from the remaining 20 days for testing.

Result

- **Precision@k**
- **Recall@k**
- **HitRate@k**