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THERMAL INTERACTION BETWEEN FREE
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The arficle investigates the conjugate problem of free convection and forced convection
along a conducting vertical plate separating two semi-infinite porous reservoirs maintained
at different temperatures. The mean heat flux through the plate and the wall temperature
distribution on the both sides of the plate are determined, The results show the effects of the
resistance parameter R, and free-to-forced-convection parameter R; on the mean heat trans- -
fer through the plate and on the wall temperatures of the both sides of the plate.

INTRODUCTION

The problem of free convection due to a heated vertical plate of finite extent placed
adjacent to a semi-infinite porous medium is of considerable theoretical and practical
interest. To a large extent, this interest has been motivated by such diverse engineering
problems as geothermal energy extraction, energy conservation in buildings, thermal
insulations, packed-bed reactors, sensible heat storage beds, ceramic processing, and
groundwater pollution. An excellent description of the state of the art of this subject has
been summarized in recent books by Nield and Bejan [1] and by Nakayama {2].

In recent years, in order to take account of physical reality, there has been a tendency
to move away from considering idealized problems in which the plate is considered to be
infinitesimally thin, but instead to take account of the so-called conjugate effects which
arise due to the finite thickness of the plate. This case has been studied theoretically by
several investigators [3-8].

In the present article, we investigate the conjugate problem of free convection along
one side of a vertical thin plate and a forced-convection flow on the other side of the plate,
which is embedded in a porous medium, with consideration of the plate thermal resistance.
The transformed boundary-layer equations are solved numerically following the same
finite-difference method as that recently used by the present authors [9]. The numerical
results for the mean Nusselt number and wall temperatures on both sides of the plate have
been obtained and discussed in detail.

It is worth mentioning to this end that Bejan and Anderson [10] presented the first
analytical treatment of the problem of counterflow on both sides of a vertical plate
separating two semi-infinite porous reservoirs maintained at different temperatures. How-
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NOMENCLATURE
b thickness of the plate U,  ambient velocity
f reduced stream function, Eq. (10) xy  Cartesian coordinates
g acceleration due to gravity o thermal diffusivity
G operator B coefficient of thermal expansion
k thermal conductivity of the porous e infinitesimal number
medium e dimensionless temperature, Eq. (10)
k, thermal conductivity of the solid plate AA*  dummy variables, Eq. (21)
K permeability of the porous medium v kinematic viscosity
L length of the plate g€n  reduced coordinates, Eq. (10)
Pe  Peclet number, Eq. (11) T designated point for £
q,,  local heat flux, Eq. (8) ¢ dependent variable
Ra  Rayleigh number, Eq. (11) v streamn function
R, thermal resistance parameter
R free-to-forced-convection parameter
¢ ambient temperature Subscripts
At characteristic temperature, Eq. (11) c denotes cold fluid system
T fluid temperature h denotes hot fluid system
uyv  velocity components along x and y m integral number of terms in a series
axes w condition at the wall

ever, theoretical studies of this heat transfer process have received very little attention in
the literature.

BASIC EQUATIONS

We consider a vertical flat plate of length L and thickness b, which separates two semi-
infinite spaces filled with a fluid saturated porous medium as shown in Fig. 1, Far away from
the plate the porous medium is considered isothermal, with a temperature ¢, on the right (hot)
side of the plate and a temperature ¢, on the left (cold) side. Due to gravity, a free-convection
boundary layer appears on the hot side of the plate and flows upward along the plate. We
assume that the fluid-saturating porous medium on the cold side of the plate flows
downward with velocity U.,. Accordingly, the two fluid streams move in opposite directions.
Because of this assumption, the present problem can be formulated in terms of the boundary-
layer approximation for two different heat transfer systems. It is also assumed that heat
conduction along the plate is neglected in comparison with transverse heat conduction.

Under these assumptions, the boundary-layer equations expressing the conservation
of mass, Darcy’s law, and the energy of this problem can be written as follows.

Free-convection side:

au,, th -
o Ty T M
uy = S%B(1. _ 1) @

A%
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Fig. 1 Schematic diagram of the physical model considered.

3T, oL, o7,
u,,—a-x— + vh—gs;- = ahW 3)

where x and y are Cartesian coordinates on the hot side of the plate; , and v, are the velocity
components along x and y axes, respectively; 7, is the fluid temperature of the hot fluid;
g is the acceleration due to gravity; K is the permeability of the porous medium; and B, v
and o, are the coefficients of the thermal expansion, kinematic viscosity, and thermal
diffusivity of the porous medium, respectively.

The boundary conditions for the hot system are

vy = 0' 7;1 = Twh(x) at y = 0 (4)
w, =0, T, =1 as y — oo

where T,,,(x) denotes the wall temperature facing the hot side.

Forced-convection side:

u, = U, v, =0 5)
T, 9T,
N ©
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where x, and y, are Cartesian coordinates on the fotced-convection side, u, is the velocity
along the x, axis, and 7, is the temperature of the cold fluid.
The boundary conditions for the cold system are

T, = Tm.(xc) at y, =0 )

where x, = L ~ x and T, (x,) is the wall temperature facing the forced-convection side.
Further, since heat conduction along the plate is neglected in comparison with transverse
heat conduction, the heat flux entering the right face of the plate is equal to that leaving the
left face at any given position x_, that is,

T, - Twh __kaTl'!’

o7,
v = ¢
(] b ay |y=0

= —f e

9y,

= q,, ¥

Ye=0

where k, and k denote the thermal conductivities of the plate and of the porous medium,
respectively, and g, denotes the local heat flux through the plate. A correlation between
T,,(x) and T, (x,) can be obtained from Eq. (8) as

kb 0T,

Twc(xc) = Twh(xc) - "E:T (9)

y=0

SOLUTION

To solve the boundary-layer equations of two different heat transfer systems de-
scribed by Eqgs. (1)—(3), and (5) and (6), we introduce the following new variables:

X Y
é = I— 1’] = [ijallz

T, - (t, + 1,)/2
Wi = 0,Ra2E2,(Em) 0,(6m) = = ('Zn :

o eit e (g

T, - (t, +1t)2
6.(5.,m.) = (Z, ) (10)

where V,, is the stream function of the hot system, which is defined in the usual way as
u, = 0y,/dy, and v, = —dy,/dx. Further, Ra and Pe are the Rayleigh and Peclet numbers, and
At is the heat transfer characteristic defined as
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_ 8KBAlL UL
Ra = oY Pe .

c (11)

Substituting variables (10) into Egs. (1)~(3), and (5}) and (6), we get

a3f a2 df, 92 a*f, 9
e ast (hak- SR 2
0%, 1 096, _ e
L Y @
subject to the boundary conditions
hi=o Too,@-12 a n=o0
|
¥, (14)
0%f,
= = - -1/2 h =
ec ewc(gc) ewh (gc) RrE.» anz =0 at ’fle 0 (15)
0, = -1/2 as N, = oo

where R, = kbRa'?/(k L) is the thermal resistance ratio of the free-convection system to the
wall, and 6,, and 6, denote the dimensionless wall temperatures facing the free-convec-
tion and forced-convection sides, respectively, which are defined as

’ T, - (t +1.)/2
6.,(6) = (,gt

T, - (t + 1,)/2 (16)
ewc (gc) = At
Also, using (8) in conjunction with (10) gives
R 9% f, 20, - X ..
R (gyz /&1/2).3_1:‘_2&.‘1:0 + -3—{“ , 0 atany given position x, Qa7

where R = (Ra/Pe)\? is the free-to-forced-convection parameter. In the work that follows,
a comprehensive and noniterative numerical scheme is outlined, which is in contrast to the
iterative process proposed by Chen and Chang [11] that uses a guessing strategy. Based on
Eq. (17), the boundary conditions can be rewritten as
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f, =0, %fﬁ]%_ = EUAE) at =0

(18)
%{l"— - 0 as MmN — o
ae *B1/29
€ = = =0
arlc R)‘ gc A’ (&) at nl.‘ (19)
6, - -1/2 as M, = e
and
A=0 a n=0mn=0 (20)
where the dummy variable A is defined as
d 1
AEM) = RAX(E) - a’:'i +0,- 2 @1)

The systems (12), (13), and (21), together with the boundary conditions (18), (19), and (20), can
be solved using the following singular perturbation method. The partial differential equa-
tions are then reduced to solvable ordinary differential equations only with respect to 1 (or 1,),
so that the difficulties associated with the singularities at the points € = 0,1 are obviated.

We consider a general form of partial differential equations and their corresponding
boundary conditions,

G(g’ Ogs Dis - cvs Ops D=0 (22)

where 0,, = 0"d/0&”, m = 0,1, ..., and G is an operator only with respect to } (or m,).
Substituting the expansions

E=1+¢

and
(23)

E _.._
m
m=0

into Eq. (22) and then comparing each term of &” (m = 0,1, ...) leads to

Gl§=1; = O

G ~ oG
[-(-;E‘*‘m_ m%u}‘ =0
- es
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and so on. The resulting equations are infinite-dimensional, so in numerical work it is
necessary to truncate the Taylot series expansion (23) after a sufficient number of terms for
the required accuracy.

RESULTS AND DISCUSSION

In this section we present a selection of numerical solutions of Egs. (12) and (13)-
subject to the boundary conditions (18)-(20). We shall restrict our attention to those cases
for which 0 <& < 1 and both the thermal resistance, R,, and free-to-forced convection, R!,
parameters have values of 0.5, 1, and 2.

In Figs. 2 and 3 we display the developing profiles of the dimensionless temperature
facing the cold plate, 8, (£,), as &, increases. It is clear from Fig. 2 that, for increasing
values of R, the temperature of the cold side of the plate decreases because the thermal
resistance of the free-convection system becomes larger compared with that of the forced-
convection flow in the cold system. In contrast, the temperature of the cold side of the plate
increases as the free convection becomes dominant, i.e., the parameter R; is increasing.
This can be seen in Fig. 3. This decrease or increase of 0,, (€,) leads to the increase of the

1.0

0.8 |

02

99,50 ' Z0.30 | Z0.10 0.10

Bucl6e)

Fig. 2 Effect of R, on 0, (€,) for Ry = 1.
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Fig. 3 Effect of Rfon 0,,(§,) for R, = 1.

heat transfer rate at the cold side of the plate, 96,(€,0)/0n,, as R, increases, and to a
reduction of the heat transfer rate on the side facing the forced-convection system with the
increase of Ry, as can be seen from Figs. 4 and 5.

Further, Figs. 6 and 7 illustrate the variation of the dimensionless axial velocity at the
hot wall, 91,(€,0)/07, as & increases. It is seen from these figures that the axial wall velocity
profiles remain negative and increase monotonically with the increasing of the parameters
R,and R’. However, the dimensionless skin friction, 0%,(€,0)/on?, is positive for the values
of R, and R} considered. Additionally, the skin friction profiles decrease with increasing of
both R, and R; parameters, as can be seen from Figs. 8 and 9.

CONCLUSIONS

In this article, we have studied the free-convection process in contact with one lateral
surface of a thin vertical finite flat plate embedded in a porous medium. A forced cooling
flow is assumed on the other lateral surface of the plate. The neglection of the heat
conduction along the plate allows the transformation of the boundary-layer equations into
a dimensionless set of nonsimilar equations of parabolic type, which is then solved using
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Fig. 4 Effect of R, on 06,(,, 0)on, for R'= 1,

a very efficient finite-difference method. It was shown that the effect of the thermal
resistance, R,, and free-to-forced-convection, R;, parameters ate important and the result-
ing physical effects in this problem are not negligible but persistent.

Finally, it is worth mentioning that the results reported in the present article are in
good agreement with those presented in [7, 11].
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Fig. 5 Effect of R’ on 00,/3n, (&, 0) for R,= 1.
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Fig. 6 Effect of R, on 9f,/on(§,0) for R/ = 1.
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Fig. 7 Effect of R; on of,/on(§,0) for R, = 1.
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Fig. 8 Effect of R, on 0%,/on*(§,0) for R} = 1.
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