On-line Coordination: Event Interaction and State Communication between Cooperative Agents

Manh Tung Pham and Kiam Tian Seow
Division of Computing Systems, School of Computer Engineering
Nanyang Technological University
Republic of Singapore 639798
Email: pham0028@ntu.edu.sg, asktseow@ntu.edu.sg

Abstract—This paper addresses a novel coordination problem for distributed agents in a discrete-event setting. We introduce and study a predicate coordination problem as the problem of distributed agents interacting and communicating between themselves to satisfy (the invariance of) a global predicate specifying an inter-agent constraint. We then develop an optimal coordination policy by which the agents can coordinate to satisfy the predicate constraint. To implement the optimal policy, we develop two on-line coordination strategies including one that can achieve significant savings in communication bandwidth, as demonstrated by simulations.

I. INTRODUCTION

Distributed multiagent coordination presents a key approach to developing complex systems. In this approach, the basic idea is to model a complex system as a network of interacting agents, and design for each agent a coordination strategy by which the individual agents can interact and communicate among themselves to manage the inter-dependencies arising due to system needs or limitations [1]. Many real-world problems such as distributed sensor nets, distributed resource allocation and distributed scheduling are important application drivers for multiagent coordination [2]. However, most of the current coordination techniques used in these complex applications are rather ad hoc and not supported by a formal design framework, and have had their performance evaluated primarily from an empirical perspective. While empirical investigation is often an inevitable process of evaluating complex applications, it is fundamentally more important to develop a generic formal basis, on which to better understand and redesign existing systems, as well as model and design new emerging systems for a variety of application domains.

In a different but related research discipline, the supervisory control of discrete-event systems (DES’s) [3], founded on the rigorous mathematical foundation of languages and automata theory [4] and partial order theory [5], is emerging as an important framework for modeling and controlling complex man-made systems. Examples include manufacturing, communication and logistics systems [4]. While supervisory control and multiagent coordination are conceptually different problems [6], interestingly, it has been shown that the mathematical concepts and algorithms from supervisory control can be re-interpreted and adapted to address the problem of coordination among discrete-event agents [6], [7], [8]. In the proposed discrete-event framework, new coordination concepts such as coordinable constraint languages [8] and optimal coordination modules [7] have been formulated as the theoretical basis for multiagent coordination. It is envisaged that the discrete-event framework, leveraging on the mathematical foundation of supervisory control, can provide a formal basis for coordination research.

Previous work [6], [7], [8] has focused on an off-line synthesis approach in which the complete coordinating actions for all anticipated interacting situations of each agent are computed off-line and stored as a coordination module. At run-time, the correct coordinating actions are then simply retrieved from the coordination module and enforced accordingly by the agent in interaction with other agents in the system. On the one hand, the off-line approach is suitable for applications where coordinating decisions have to be made as fast as possible during the agents’ run-time interaction. On the other hand, the off-line planning associated with the approach may be too expensive for applications where the number of anticipated interacting situations is too large, or when off-line planning time is limited. Against this background, this paper studies a novel coordination problem among discrete-event agents, and proposes an on-line coordination synthesis approach that complements the off-line approach proposed [6], [7], [8]. Importantly, in the on-line approach, the coordinating actions to be applied are computed by each agent only in response to situational changes. A significant merit of this on-line approach is that it avoids altogether the off-line construction of coordination modules, and therefore mitigates the inherent off-line computational complexity associated with the off-line approach. For a clear exposition to the new concepts and ideas introduced in this paper, we present and explain the theoretical results for two coordinating agents. Future work will extend the results to multiple agents.

We consider a class of discrete-event agents that can be modeled as automata (Section II), the most basic representation of DES models. Besides providing a simple yet powerful modeling formalism, automata is also amenable to composite operations and mathematical analysis [4]. Within this modeling formalism, we introduce and study a predicate coordination problem (Section III) as the problem of distributed agents interacting and communicating continually between themselves to satisfy (the invariance of) a given global predicate \(P_c \) defined on the composite state space of the agents. In essence, the predicate \(P_c \) is an inter-agent constraint of the fundamental safety type, specifying that no bad states can ever be visited during multiagent interaction. The problem is shown to be solvable in some autonomy permitted setting (Theorem 1) for coordinable predicates (Definition 3) not less restrictive than...
a given P_c on the state space. The key solution developed in this paper is an optimal policy (Theorem 2) by which these agents can interact and communicate to guarantee coordination quality, in that the executing event sequences are transitions of their composite states that remain confined to the largest feasible state subset of that defined by the given predicate, and can reach all the states in this state subset (Section IV). Formally, this feasible state subset corresponds to the supremal coordinable predicate (denoted as P_{c^\sup}) of the given predicate P_c (Definition 4).

To implement the optimal coordination policy, two cooperative agents A_1 and A_2 can coordinate as follows: Upon executing a local event or receiving a state information update, each agent would always take the action of enabling every event (defined at its current local state) provided it does not (eventually) lead the coordinated state space out of the feasible subset characterized by P_{c^\sup}, and disabling the event otherwise. Besides, each agent (say A_1) would have to decide whether or not to send its current local state to the other agent A_2, to provide the latter with sufficient information for computing and updating its coordinating actions. Two decision strategies are formulated in this paper:

1. In the first solution strategy, agent A_1 would always send its updated local state to agent A_2 whenever it enters a new state (Section V-A).

2. In the second, agent A_1 would only do so when it detects that agent A_2 might no longer be coordination-ready (to correctly maintain P_{c^\sup}) as the latter’s coordinating actions might have been invalidated (Section V-B). Agent A_1 detects the coordination-readiness (Definition 8) of agent A_2 by checking a set of local conditions for co-stability, a new coordination concept formulated in Definition 9.

Unlike the first strategy proposed which entails full communication, the second strategy, importantly, can significantly reduce the communication bandwidth, as demonstrated by experimental evaluation (Section VII), while still maintaining coordination quality (Theorem 3). As our proposed coordination problem is expressed in the rudimentary framework of predicates and finite automata, it can furnish a theoretical basis for a wide range of applications. An example (Section VI) illustrates the potential applicability of our approach, and discussion with related work (Section VIII) highlights the significance of this paper.

II. PRELIMINARIES: LANGUAGES AND AUTOMATA

A finite-state automaton A is a 4-tuple $(X^A, \Sigma^A, \delta^A, x_0^A)$, where X^A is the finite set of states, Σ^A is the finite set of events, $\delta^A : \Sigma^A \times X^A \rightarrow X^A$ is the (partial) transition function, and $x_0^A \in X^A$ is the initial state. Automaton A is said to be empty if its state set X^A is empty. Henceforth, unless otherwise stated, an automaton is assumed to be nonempty.

Given an automaton A, write $\delta^A(\sigma, x)$ to denote that $\delta^A(\sigma, x)$ is defined; $\Sigma^A(x)$ to denote the set of events $\sigma \in \Sigma^A$ such that $\delta^A(\sigma, x)$; and $(\Sigma^A)^*$ to denote the set of all finite sequences (or strings) of events from Σ^A, including the empty string ϵ. The definition of δ^A is extended to $(\Sigma^A)^* \times X^A$ as follows: (i) $\delta^A(\epsilon, x) = x$, and (ii) $(\forall \sigma \in \Sigma^A)(\forall s \in (\Sigma^A)^*)\delta^A(\sigma, x) = \delta^A(\sigma, \delta^A(s, x))$.

The runtime behavior of automaton A can then be described by the language $L(A)$ which encompasses every string of events that can be generated from its initial state. Formally, $L(A) = \{s \in (\Sigma^A)^* : \delta^A(s, x_0^A)! \}$. For two strings s and s' in $(\Sigma^A)^*$, we write $s' \preceq s$ if s' is a prefix of s, i.e., $(\exists t \in (\Sigma^A)^*)$ such that $s' = st$.

A state $x \in X^A$ is reachable if $(\exists s \in (\Sigma^A)^*) \delta^A(s, x_0^A) = x$, and automaton A is reachable if all its states are reachable. If A is not reachable, then a reachable automaton, denoted by $Reach(A)$, can be computed to generate the same language as A by deleting from A every unreachable state.

On 'equivalence' of two automata A_1 and A_2, we write $A_1 = A_2$ if they are identical in structure.

Let $A_i, i \in \{1, 2\}$, be two automata with $\Sigma^A_1 \cap \Sigma^A_2 = \emptyset$. Then their synchronous product $A_1 \parallel A_2$, models a discrete-event system of A_1 and A_2 interacting by interleaving events generated between themselves. Formally, $\Sigma^A_1 = \Sigma^A_1 \cup \Sigma^A_2$, $X^A = X^A_1 \times X^A_2$, $x_0^A = (x_0^A_1, x_0^A_2)$, and $\delta^A : \Sigma^A \times X^A \rightarrow X^A$ is given by:

$$\delta^A((\sigma, (x_1, x_2))), \text{ if } \sigma \in \Sigma^A_1(x_1);$$

$$\delta^A(\sigma, x_2), \text{ if } \sigma \in \Sigma^A_2(x_2);$$

$$\text{undefined, otherwise.}$$

III. PROBLEM FORMULATION

Consider a system of two discrete-event agents modeled by the respective reachable automata $A_1 = (X^{A_1}, \Sigma^{A_1}, \delta^{A_1}, x_0^{A_1})$ and $A_2 = (X^{A_2}, \Sigma^{A_2}, \delta^{A_2}, x_0^{A_2})$ such that $\Sigma^{A_1} \cap \Sigma^{A_2} = \emptyset$. The event set Σ^{A_i} of agent A_i is partitioned into the controllable set $\Sigma^{A_i}_c$ and the uncontrollable set $\Sigma^{A_i}_uc$. From the agent planning viewpoint, automaton A_i is viewed as the local plan of the respective agent, encompassing all possible local ways to achieve the agent’s own goal; and an uncontrollable event in $\Sigma^{A_i}_uc$ is inherently autonomous and can be executed solely at the free will of the agent. As a rule, an event is pre-specified as uncontrollable if it is critical to the owner agent that disabling the event and limiting its autonomy is undesirable, expensive or even impossible.

Let $A = A_1 \parallel A_2$ model the multiagent system of A_1 and A_2 freely interacting with $\Sigma^{A_1}_c = \Sigma^{A_1}_c \cup \Sigma^{A_2}_c$ and $\Sigma^{A_1}_uc = \Sigma^{A_1}_uc \cup \Sigma^{A_2}_uc$. The two agents A_1 and A_2 would need to coordinate between themselves if, due to system needs or limitations, the execution of some event sequences in $L(A)$ is undesirable and must be prevented. In other words, their coordinating actions would need to satisfy an inter-agent constraint that excludes undesirable event sequences.

Consider an inter-agent constraint specified by an automaton C (representing the language $L(C)$). Then the coordination problem becomes that of A_1 and A_2 interacting and communicating to conform to C, such that none of the sequences in the bad sequence set $L(A) - L(C)$ can ever be generated during multiagent interaction. The automaton C is essentially an inter-agent constraint of the safety type, specifying that nothing bad can happen.

In this paper, we focus on a C which is a nonempty sub-automaton of A, i.e., $X^C \subseteq X^A$, $x_0^C = x_0^A$, and δ^C is a restriction of δ^A on $\Sigma^A \times X^C$. Such an automaton C can be equivalently represented by a predicate defined on the set X^A. In essence, a predicate P defined on X^A is a function $P : X^A \rightarrow \{0, 1\}$. For automaton C, the equivalent predicate
P_c is defined as follows:

$$(\forall x \in X^A) P_c(x) = \begin{cases} 1, & \text{if } x \in X^C; \\ 0, & \text{otherwise}. \end{cases}$$

Henceforth, such a constraint automaton C and its equivalent predicate P_c can be used interchangeably. For a state $x \in X^A$, we say x satisfies P_c, and write $x \models P_c$ if $P_c(x) = 1$. For two predicates P_1 and P_2 defined on X^A, we say that P_1 is not less restrictive than P_2, denoted by $P_1 \preceq P_2$, if $(\forall x \in X^A) (x \models P_1 \Rightarrow x \models P_2)$.

In addressing what can now be called a predicate coordination problem, P_c is an inter-agent constraint of the fundamental safety type, specifying that no states in the bad state set $X^A - X^C$ can ever be visited during multiagent interaction.

The coordinating actions for a pair of agents are governed by a coordination policy, formally defined as follows.

Definition 1. A coordination policy π_{A_1, A_2} is a pair of agent policies $< \pi_{A_1}, \pi_{A_2} >$, where π_{A_i} for agent A_i is a mapping from a state $x \in X^A$ to an event subset of Σ^A, such that $(\forall x \in X^A) \pi_{A_i}(x) \subseteq \Sigma^A_{uc} \cap \Sigma^A(x)$.

Thus π_{A_i} attaches to each state x of X^A a subset of Σ^A_i that contains $\Sigma^A_{uc} \cap \Sigma^A(x)$ - the subset of uncontrollable events of A_i that are defined at x. Using coordination policy π_{A_1, A_2}, agent A_i, upon observing the system state $x \in X^A$, enables every event $\sigma \in \pi_{A_i}(x)$, and disables all other events. The condition $(\forall x \in X^A) \pi_{A_i}(x) \supseteq \Sigma^A_{uc} \cap \Sigma^A(x)$ characterizes the fact that uncontrollable events can never be disabled.

Definition 2. The system of agents A_1 and A_2 interacting using a coordination policy π_{A_1, A_2} is a (discrete-event) system represented by an automaton $A_\pi = \text{Reach}(X^A, \Sigma^A, \delta_\pi, x_0^A)$, where $(\forall \sigma \in \Sigma^A_i) (\forall x \in X^A) \delta_\pi^A(\sigma, x) = \delta^A(\sigma, x)$ if $\delta^A(\sigma, x)$! and $\sigma \in \pi_{A_i}(x)$, and is undefined otherwise.

Since we are only interested in the reachable part of the coordinated system, the condition $(\forall x \in X^A) \pi_{A_i}(x) \supseteq \Sigma^A_{uc} \cap \Sigma^A(x)$ of a coordination policy π_{A_1, A_2} in Definition 1 can be relaxed to $(\forall x \in X^A) \pi_{A_i}(x) \supseteq \Sigma^A_{uc} \cap \Sigma^A(x)$.

Definition 3. A predicate P defined on X^A is said to be coordinate if, for every $x \in X^A$, satisfing P, the following conditions are satisfied: (1) $(\exists s \in (\Sigma^A)^*) [\delta^A(s, x_0^A) = x$ and $(\forall u \leq s) \delta^A(u, x_0^A) \models P]$, and (2) $(\forall \sigma \in \Sigma^A) [\delta^A(\sigma, x) \Rightarrow \delta^A(\sigma, x)]$.

By Definition 3, coordinability asserts that if x satisfies P then (i) x is reachable from x_0^A via a sequence of states satisfying P [Condition (1)], and (ii) if $\sigma \in \Sigma^A_{uc}$ and $\delta^A(\sigma, x)!$, then $\delta^A(\sigma, x)$ satisfies P [Condition (2)].

Theorem 1. Let C be a nonempty sub-automaton of A. Then there exists a coordination policy π_{A_1, A_2} such that $A_\pi = C$ if and only if P_C is coordinable.

Proof: Let π_{A_1, A_2} be a coordination policy with each agent policy π_{A_i} given as: $(\forall x \in X^A) \pi_{A_i}(x) = \Sigma^A(x) \cap \Sigma^A_i$. Since P_c is coordinable, by Condition (2) of Definition 3, $(\forall x \in X^A) \pi_{A_i}(x) \supseteq \Sigma^A_{uc} \cap \Sigma^A(x)$. Moreover, by Condition (1) of Definition 3, C is a reachable automaton. Hence it follows that $A_\pi = C$.

(Only If) Let π_{A_1, A_2} be a coordination policy with $A_\pi = C$. Since A_π is a reachable automaton, P_c trivially satisfies Condition (1) of Definition 3. And, since $(\forall x \in X^A) \pi_{A_i}(x) \supseteq \Sigma^A_{uc} \cap \Sigma^A(x)$, it follows that P_c satisfies Condition (2) of Definition 3. Hence P_c is coordinable. ■

It can be shown that the set of coordinable predicates that are not less restrictive than P_c is nonempty and closed under arbitrary predicate disjunctions, and so its supremal element exists.

Supremal coordinable predicate P_c^{sup} of a given predicate P_c is defined as follows.

Definition 4. Given a predicate P_c defined on the system state space X^A. The supremal coordinable predicate of P_c, denoted by P_c^{sup}, is the unique predicate defined on X^A which satisfies the following properties: (1) $P_c^{\text{sup}} \preceq P_c$, (2) P_c^{sup} is coordinable, and (3) $(\forall P \preceq P_c) [\text{if } (P \text{ is coordinable)} \Rightarrow (P \preceq P_c^{\text{sup}})]$.

Let C^{sup} denote the equivalent automaton of P_c^{sup}. The predicate coordination problem can now be formally stated as follows.

Problem 1. Given a predicate constraint P_c defined on the system state space X^A, construct the (unique) optimal coordination policy π_{A_1, A_2} such that $A_\pi = C^{\text{sup}}$.

The solution policy for Problem 1 is said to be optimal since the agents implementing it do not disable their own controllable events unless doing so may eventually lead the coordinated state space out of the state subset satisfying P_c. Therefore, the policy enables the agents to visit as many states in X^C as possible, and have maximal autonomy over their own actions.

Note that (i) $C^{\text{sup}} = C$ if P_c is coordinable, and (ii) P_c^{sup} can be a false predicate, i.e., $(\forall x \in X^A) P_c^{\text{sup}}(x) = 0$; in this case, C^{sup} is an empty automaton, and Problem 1 has no solution.

IV. COORDINATION SYNTHESIS

Definition 5. A state $x \in X^A$ is said to be P_c-safe if $(\forall s \in (\Sigma^A_{uc})^*) [\delta^A(s, x) \Rightarrow \delta^A(s, x) \models P]$.

Thus a state x is P_c-safe if every state reachable from x via a string of uncontrollable events satisfies P_c. Following, it can be shown that C^{sup} is an empty automaton if and only if the initial state state x_0^A is P_c-unsafe. In synthesizing the solution for Problem 1, we shall henceforth assume that x_0^A is P_c-safe.

Given a state $x \in X^A$, the following *CheckSafety* procedure returns true if x is P_c-safe, and false otherwise.

Procedure CheckSafety (x ∈ X^A)

\[
\text{begin if Safety}[x] \neq \text{NIL then Return Safety}[x]; \\
\text{Return BFS}[\text{Checking}(x)]; \\
\text{end}
\]

CheckSafety determines the safety value of a given system state x by performing a search over part of or the entire system model $A = A_1 || A_2$, and possibly also using stored results from prior (step) computations. It maintains a global logic variable Safety to store the safety value of every state in
X^A. $Safety[x]$ is true if x is P_s-safe, false if x is P_s-unsafe, and NIL if the safety value of x has not been determined. If $Safety[x] \neq NIL$, i.e., the safety value of x has been computed in prior computations, the procedure simply returns the stored value. Otherwise, it invokes a procedure called $BFSChecking$ to determine the safety value of x.

Procedure $BFSChecking(x \in X^A)$

```plaintext
begin
  Expanded $\leftarrow \{\};$ $Q \leftarrow \{x\};$ $father[x] \leftarrow NIL;$
  while $Q \neq \emptyset$ do
    $u \leftarrow$ the head element of $Q;$ $Q \leftarrow Q \cup \{u\};$
    if $u \in Expanded$ then continue;
    Expanded $\leftarrow Expanded \cup \{u\};$
    foreach $\sigma \in \Sigma^A(u) \cap \Sigma^A_{uc}$ do
      $v \leftarrow \delta^A(\sigma, u);$ if $Safety[v] == false or v $\not\in P_s$ then
        if $\neg Safety[v]$ or $v \notin father[v];$
        $Return \ false;$
        if $Safety[v] == false$ or $v \notin father[v] ;$
        $Return \ false;$
      fi
    fi
  fi
  foreach $u \in Expanded$ do
    $Safety[u] \leftarrow true;$
  Return $true;$
end
```

$BFSChecking$ builds a Σ^A_{uc}-tree rooted at x by expanding all the consecutive Σ^A_{uc}-successors of x in a breadth-first fashion. It maintains several data structures for this expansion process: a first-in, first-out queue to manage the set of states to be expanded next, a queue $Expanded$ to store every state that has already been expanded, and, for every expanded state u, a variable $father[u]$ to store its predecessor. By Definition 5, $BFSChecking$ determines the safety value of x as follows. If, during the expansion process, there is some Σ^A_{uc}-successor v of x that does not satisfy P_s, or has already been shown to be P_s-unsafe in prior computations, then x and all of its Σ^A_{uc}-successors in the path leading x to v are P_s-unsafe. In this case, the procedure simply stores the P_s-unsafe values of these states in variable $Safety$ and returns false. Otherwise, if the Σ^A-tree rooted at x is expanded fully without encountering any P_s-unsafe state, then x and all its consecutive Σ^A_{uc}-successors are P_s-safe. Thus, the procedure simply stores the P_s-safe values of every expanded state $u \in Expanded$ in variable $Safety$, and returns true. Using a breadth-first search, procedure $CheckSafety$ has worst-case time complexity which is linear in the total number of states and uncontrollable transitions of its input automaton A. Thus the highest complexity bound is linear in the (state plus transition) size of A. In an upper bound, the complexity is $O(|X^A| + |X^A| \times |\Sigma^A_{uc}|)$ or $O(|X^A| \times |\Sigma^A_{uc}|)$.

Theorem 2. Let C be a nonempty sub-automaton of A. Assume that x^0_0 is P_s-safe. Let $\pi_{<A_1,A_2>}$ be a coordination policy with each agent policy π_{A_i} given as: $\forall x \in X^A \forall \sigma \in \Sigma^A_i \exists \pi_{A_i}(x)$ if and only if $\delta^A_i(\sigma, x)$ is P_s-safe. Then $A = C^{sup}$ (i.e., $\pi_{<A_1,A_2>}$ is the optimal solution policy of Problem 1).

Proof: Since x^0_0 is P_s-safe, $(\forall x \in X^A) \pi_{A_i}(x) \supseteq \Sigma^A_i(x) \cap \Sigma^A_{uc}$. Let P_{A_s} be an equivalent predicate of A_s. Trivially, $P_{A_s} \leq P_s$. We now have to show that (i) P_{A_s} is coordinate, and (ii) for any coordinate predicate $P \preceq P_{A_s}$, $P \leq P_{A_s}$.

(i) Since $A = A_s$ is a reachable automaton, P_{A_s} trivially satisfies Condition (1) of Definition 3. Moreover, since $(\forall x \in X^A)(x \in \Sigma_{uc} \delta^A_i(\sigma, x) = P_s$-safe, implying $\delta^A_i(\sigma, x) = P_s$. It follows that P_{A_s} satisfies Condition (2) of Definition 3. Hence P_{A_s} is coordinate.

(ii) Let $P \preceq P_s$ be a coordinate predicate. Let $x \in X^A$ be an arbitrary state that satisfies P. Then x is reachable from x^0_0 via a sequence of states satisfying P, and $(\forall x \in X^A(\bigwedge x \in \Sigma_{uc} \delta^A_i(\sigma, x) = P)$. For a string $s \in \Sigma_{uc}^*$, by induction on the length of s, we infer that if $\delta^A(s, x) = P_s$, then $\delta^A(s, x) = P$. Hence, since $P \preceq P_s$, $(\forall x \in \Sigma_{uc}^*) \delta^A(s, x) = P_s$, which in turn implies that x is P_s-safe, or $x = P_{A_s}$. Hence $P \preceq P_{A_s}$.

By Theorem 2, to implement the optimal solution policy of Problem 1, the following $ComputeEnabledEventSet$ procedure could be used by agent $A_i (i \in \{1, 2\})$ to determine the set of events to enable next each time it observes a new state system x.

Procedure $ComputeEnabledEventSet(x \in X^A)$

```plaintext
begin
  $\pi_{A_i}(x) \leftarrow \Sigma^A_i(x) \cap \Sigma^A_{uc};$
  foreach $\sigma \in \Sigma^A_i(x) \cap \Sigma^A_{uc}$ do
    if $CheckSafety(\delta^A_i(\sigma, x) == true then$
      $\pi_{A_i}(x) \leftarrow \pi_{A_i}(x) \cup \{\sigma\}$
    fi
  fi
  $Return \pi_{A_i}(x);$;
end
```

The procedure has worst-case time complexity of $O(|\Sigma^A_i| \times |\Sigma^A_{uc}|)$ since it has to invoke procedure $CheckSafety$ exactly $|\Sigma^A_i| \times |\Sigma^A_{uc}|$ times.

V. ON-LINE COORDINATION STRATEGIES

To implement the optimal coordination policy given in Theorem 2, i.e., policy $\pi_{<A_1,A_2>}$ for which $A = C^{sup}$, we now present two on-line coordination strategies that enable the agents to interact and individually compute their next coordinating actions in response to continual situational changes.

A. With Full Communication

The first on-line strategy is called OnlineCoAgent-ComFull (Fig.1), and follows directly from Theorem 2. Using the strategy, the agents start by exchanging their initial states, and upon entering a new state, an agent would immediately send its updated local state to the other agent. Each time the agents have individually updated the system state, they would apply procedure $ComputeEnabledEventSet$ to determine their next set of events to enable.

Although easy to implement, OnlineCoAgent-ComFull entails full communication and therefore may not be desirable for situations in which communication bandwidth is a scarce resource. For such situations, other coordination strategies which could reduce communication are needed. OnlineCoAgent-ComFull can however be used to benchmark against the effectiveness in bandwidth reduction of these strategies.
OnlineCoAgent-ComFull(A_i)

\begin{verbatim}
begin
 Communicate the initial state x_{0i}^A to A_2;
end

Upon receiving local state x_2 from A_2
\begin{verbatim}
begin
 Update system state $x \leftarrow (x_1, x_2)$;
 Apply ComputeEnabledEventSet(x) to determine the next set of events to enable;
end

Upon executing event $\sigma \in \Sigma^{A_1}$
\begin{verbatim}
if $x_1 \not\equiv \delta^{A_1}(\sigma, x_1)$ then
 Update system state $x \leftarrow (\delta^{A_1}(\sigma, x_1), x_2)$;
 Communicate the current local state x_1 to A_2;
 Apply ComputeEnabledEventSet(x) to determine the next set of events to enable;
end
\end{verbatim}
\end{verbatim}

Fig. 1: OnlineCoAgent-ComFull(A_i)($i \in \{1, 2\}$). On-line coordination strategy with full communication for agent A_i. For definiteness of description, the strategy instance for A_1 is shown; that for A_2 is the same except that its reciprocal agent is A_1.

B. With Reduced Communication

The second coordination strategy attempts to reduce communication bandwidth. It uses the concept of an agent's (coordination) view to implement the optimal policy given in Theorem 2.

The local view of agent A_1 is represented by the tuple $(x_1, x_{1}^{x_1}, x_{2}^{x_1})$, where x_1 is its current state, $x_{1}^{x_1}$ is A_1’s view of A_2’s current state and is the most recent state information A_1 received from agent A_2, and $x_{2}^{x_1}$ is the most recent state information that A_1 sent to A_2. The local view of agent A_2 is similarly represented by the tuple $(x_2, x_{1}^{x_2}, x_{2}^{x_2})$. Note that since inter-agent communication is assumed instantaneous, $x_{1}^{x_2}$ and $x_{2}^{x_2}$ might be different from x_1 and x_2, respectively. When $x_{1}^{x_2} = x_1$ and $x_{2}^{x_1} = x_2$, i.e., both the agents have the most current information about each other’s local state, the agents are said to be totally synchronized.

To always achieve total synchronization, the agents would have to send their updated local state to the other whenever they enter a new state, i.e., they would have to follow the full communication approach. Since total synchronization may not always be necessary for coordination, the communication needs between coordinating agents could be reduced by enabling the agents to strategically decide, based on their local view, whether or not to send their current local state to the other. In developing one such strategy, the following definition is needed.

Definition 6. Given $x_1 \in X^{A_1}$, two states $x_2, x_2' \in X^{A_2}$ are said to be equivalent with respect to x_1 (on P_c), and denoted by $x_2 \equiv x_1 x_2'$ (mod P_c), if $(\forall \sigma \in \Sigma^{A_1}(x_1) \cap \Sigma^{A_2}) (\delta^{A_1}(\sigma, x_1), x_2) \in P_c$-safe if and only if $(\delta^{A_1}(\sigma, x_1), x_2') \in P_c$-safe. The notion $x_1 \equiv x_1 x_2'^{A_2}$ is defined similarly.

Intuitively, for $i, j \in \{1, 2\}$, $x_i \equiv x_j x_i'$ (mod P_c) means that whether agent A_i is in state x_i or x_i', the coordinating actions of agent A_j (regarding which events it should enable or disable) are the same when maintaining P_c. An important implication is that if A_j is in state x_j, A_i does not need to inform A_j when it moves from state x_i to x_i'.

For economy of notation, we will often omit ‘mod P_c’ and simply write $x_i \equiv x_j x_i'$ in place of $x_i \equiv x_j x_i'$ (mod P_c) when no ambiguity can arise.

Given $x_j \in X^{A_j}$, $\equiv x_j$ defines an equivalence relation on the state set X^{A_j}. As per usual, a partial order relation can be defined over the set of those equivalence relations.

Definition 7. For two states $x_1, x_1' \in X^{A_1}$, $\equiv x_1'$ is said to be finer than $\equiv x_1$, and denoted by $\equiv x_1 \preceq \equiv x_1'$, if $\forall x_2, x_2' \in X^{A_2}(x_2 \equiv x_1 x_2' \Rightarrow (x_2 \equiv x_1' x_2')$. The notion $\equiv x_2 \preceq \equiv x_2'$ for $x_2, x_2' \in X^{A_2}$ is defined similarly.

Thus, $\equiv x_j \preceq \equiv x_j'$ means that if A_j does not need to inform A_i in state x_i when it moves from state x_i to x_i', it also does not need to do so if A_j is in state x_j'.

We can now define the main concept called coordination-readiness that characterizes when the two coordinating agents A_1 and A_2 can correctly determine their next set of enabled events to maintain P_c.

Definition 8. Two agents A_1 and A_2, with their respective local views $(x_1, x_{1}^{x_1}, x_{2}^{x_1})$ and $(x_2, x_{1}^{x_2}, x_{2}^{x_2})$, are said to be coordination-ready (for P_c) if $x_1^{x_1} \equiv x_1 x_2$ and $x_2^{x_2} \equiv x_2 x_1$.

Thus, the two agents are coordination-ready if, $x_{1}^{x_1}$, the most recent state information A_1 sent to A_2, presents A_2 with the equivalent next-state information associated with x_1, the current state of A_1, for determining the same P_c-safety value of every next system state that can result from A_2’s execution of a controllable event from its current state x_2, $i, j \in \{1, 2\}$.

Hence, to implement the optimal solution policy π_{A_1, A_2} for which $A_2 = C^{opt}$ (Theorem 2), the agents, following every event execution, would need to re-establish coordination-readiness prior to determining their next set of enabled events. Note that always re-establishing total synchronization as with OnlineCoAgent-ComFull is the most conservative way that trivially and implicitly re-establishes coordination-readiness. Checking for coordination-readiness first, with $x_{1}^{x_1} \equiv x_1 x_2$ by agent A_1, might reduce A_2 to communicating its current local state to the other agent A_2 only when the check fails. However, such direct checking clearly requires agent A_1 to also know the current local state x_j of agent A_j, which is not always possible. This necessitates a stronger notion called co-stability, whose conditions can be mutually checked by the agents.

Definition 9. Two agents A_1 and A_2 with their respective local views $(x_1, x_{1}^{x_1}, x_{2}^{x_1})$ and $(x_2, x_{1}^{x_2}, x_{2}^{x_2})$, are said to be co-stable (for P_c) if (1) $x_1^{x_1} \equiv x_1 x_1$, (2) $x_2^{x_2} \equiv x_2 x_2$, (3) $\equiv x_1 \preceq \equiv x_2$, and (4) $\equiv x_2 \preceq \equiv x_1$.

The following proposition formally states that co-stability is a sufficient condition for coordination-readiness.
Proposition 1. Whenever agents A_1 and A_2 are co-stable (for P_σ), they are coordination-ready (for P_σ).

Importantly, the co-stability conditions could be mutually checked by the two agents A_1 and A_2 as follows. Conditions (1) and (3), which only require information access to x_1^1, x_2^1, and x_1^2, can be checked by agent A_1 using its local view (x_1^1, x_2^1, x_1^2). To check Condition (1), i.e., whether $x_1^2 \equiv x_1^2 \equiv x_2^1$, A_1 can simply check, for each $\sigma \in \Sigma_{A_2}(x_1^1) \cap \Sigma_{A_1}$, whether the two system states $(x_1^1, \delta_{A_2}(\sigma, x_2^1))$ and $(x_1^1, \delta_{A_1}(\sigma, x_2^1))$ have the same P_σ-safety value. This checking process has worst-case time complexity of $O(|\Sigma_{A_2}(x_1^1) \times |\Sigma_{A_1}|)$ since it involves invoking procedure \textit{CheckSafety} exactly $2 \times |\Sigma_{A_2}(x_1^1) \cap \Sigma_{A_1}|$ times. Similarly, to check Condition (3), i.e., whether $\equiv x_1^2 \equiv x_2^1$, A_1 can iterate over every state pair $x_2^1, x_2^2 \in X_{A_2} \times X_{A_2}$ and check whether $(x_2^1 \equiv x_2^2 \equiv x_2^1)$ implies $(x_2^1 \equiv x_2^1 \equiv x_2^2)$. This checking process can be shown to have worst-case time complexity of $O(|\Sigma_{A_2}(x_1^1) \times |\Sigma_{A_1}|)$. Conditions (2) and (4) can be checked by agent A_2 in a similar manner.

Thus, to re-establish coordination-readiness following an event execution, the agents can check the co-stability conditions, and when necessary, interact by communicating their local state to re-establish co-stability using a new strategy called \textit{OnlineCoAgent-ComReduce} (Fig.2); we call this process co-stabilization.

\begin{algorithm}
\caption{OnlineCoAgent-ComReduce(A_1)}
\begin{algorithmic}
\State Communicate the initial state x_0^1 to A_2;
\State Upon receiving local state x_2^1 from A_2
\begin{algorithmic}
\State \textbf{begin}
\State \quad Update the view of A_2’s state: $x_2^1 \leftarrow x_2^1$;
\State \quad \textbf{if} $x_1^1 \neq x_2^1 \equiv x_1^1 \then$
\State \quad \quad Communicate x_1^1 to A_2; Update $x_1^2 \leftarrow x_1^1$;
\State \quad \quad \textbf{Apply} ComputeEnabledEventSet(x_1^1, x_1^2))
\State \quad \textbf{end}
\State \textbf{end}
\State Upon executing event $\sigma \in \Sigma^{A_1}$
\begin{algorithmic}
\State \textbf{begin}
\State \quad Update current state: $x_1^1 \leftarrow \delta^{A_1}(\sigma, x_1^1)$; \textbf{if} $\equiv x_1^2 \not\equiv x_1 \or x_1^1 \equiv x_1 \then$
\State \quad \quad Communicate x_1^1 to A_2; Update $x_1^2 \leftarrow x_1^1$;
\State \quad \quad \textbf{Apply} ComputeEnabledEventSet(x_1^1, x_1^2))
\State \quad \textbf{end}
\end{algorithmic}
\end{algorithmic}
\end{algorithm}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{OnlineCoAgent-ComReduce(A_1) ($i \in \{1, 2\}$) - On-line coordination strategy with reduced communication for agent A_i. For definiteness of description, the strategy instance for A_1 is shown; that for A_2 is the same except that its reciprocal agent is A_1.}
\end{figure}

Note that the strategy OnlineCoAgent-ComFull (Fig.1) implicitly and trivially guarantees co-stability, by requiring the two agents to always communicate to re-establish total synchronization between themselves. As Theorem 3 below formally states, the strategy OnlineCoAgent-ComReduce (Fig.2) can also attain co-stability, but without the agents always having to achieve total synchronization. Importantly, this suggests that the latter strategy can reduce inter-agent communication.

Theorem 3. Using OnlineCoAgent-ComReduce, two agents A_1 and A_2 can always, after every event execution, co-stabilize between themselves (and hence become coordination-ready) for P_σ.

\textbf{Proof}: Using OnlineCoAgent-ComReduce, the agents start by exchanging their initial local states, and are initially co-stable. Now, assume that the agents are currently co-stable with their respective local views (x_1^1, x_2^1, x_1^2) and (x_2^1, x_1^2, x_2^1). Upon executing a local event σ and moving to a new local state, using OnlineCoAgent-ComReduce, one agent (say A_1) updates its local state to x_1^1 and initiates the communication process with the other agent A_2 as follows.

- A_1 first checks if the two conditions $\equiv x_1^2 \equiv x_1^1$ and $x_1^2 \equiv x_1^1$, x_1^1 are satisfied. If so, the agents are already co-stable, and no inter-agent communication is needed.
- If, however, $\equiv x_1^2 \equiv x_1^1$ or $x_1^1 \equiv x_1^2$, x_1^1, A_1 communicates x_1^1 to A_2, and updates its local view to (x_1^2, x_1^2, x_1^1), validating Condition (1) $(x_1^1 \equiv x_1^2 \equiv x_1^1)$ and Condition (3) $(\equiv x_1^2 \equiv x_1^1)$ of co-stability. Upon receiving x_1^1, A_2 updates its local view to (x_2^2, x_1^1, x_2^2). Condition (4) $(\equiv x_1^1 \equiv x_1^2)$ is still satisfied because the agents are co-stable prior to A_1 executing event σ. A_2 then proceeds to check Condition (2) $(x_1^1 \equiv x_1^2)$. The cases are two.

- \textit{Case (1)}: $\equiv x_1^2 \equiv x_1^1$. Together with $x_1^2 \equiv x_2^1$, x_2 (because the agents are co-stable prior to A_1 executing event σ), it implies $x_1^2 \equiv x_1^2$, i.e., Condition (2) is satisfied. In this case, the agents are co-stable after A_2 has acted upon the communication message x_1^1 received from A_1, and thus no further communication is needed.
- \textit{Case (2)}: $\equiv x_1^2 \equiv x_1^1$. In this case, Condition (2) may not be satisfied. If so, A_2 then communicates x_2 to A_1, and in response, A_1 updates its view of A_2’s current state from x_1^1 to x_2. Now the two agents are totally synchronized and are therefore co-stable.

Thus, the two agents can always, after every event execution, co-stabilize between themselves.

Thus, OnlineCoAgent-ComReduce enables two coordinating agents A_1 and A_2 to maintain the supremal coordinable predicate of the constraint P_σ, and hence implement the optimal solution policy of Problem 1.

VI. ILLUSTRATIVE EXAMPLE

We now present an example to explain the effectiveness of our on-line coordination strategy with reduced communication. The example under study is an exploration problem consisting of two agents A_1 and A_2 concurrently exploring a common space. The common space to be explored consists of three regions A, B and C which are far away from each other, and each region consists of n rooms to be explored (Fig.3). To explore the space, each agent moves from one room to another, and explores each room individually. Since the regions are far from each other, the cost of moving from one region to another is much more expensive than the cost of moving among the rooms in the same region. Therefore, after entering one region, the agents would want to freely explore every
room in the region before moving to another region. Thus it is reasonable to pre-specify the events representing each agent moving inside a region as uncontrollable, and those representing each agent moving from one region to another as controllable.

Consider an inter-agent (predicate) constraint P_c specifying that ‘the two agents must not explore the same room at the same time’. Since an agent could uncontrollably move from one room to another in the same region, it is easy to see that the supremal coordinate predicate of P_c, denoted by $P_{c\sup}$, is that ‘the two agents must not explore the same region at the same time’. Agents A_1 and A_2 can utilize the proposed OnlineCoAgent-ComReduce strategy to interact and communicate to maintain $P_{c\sup}$ as follows.

Defining only those states necessary for illustration, for $1 \leq i \leq n$, let $a_{1,i}$ denote the state of agent A_1 when it is exploring room i in region A; and $b_{2,i}$ and $c_{2,i}$ denote the states of agent A_2 when it is exploring room i in region B and region C respectively. From Definitions 6 and 7, it can be verified that: $(\forall i, j, k, h \in [1, n]) \ b_{2,i} \equiv_{a, k} \ b_{2,j}, \ c_{2,i} \equiv_{a, k} \ c_{2,j}, \equiv_{a, i} \equiv_{a, k} \ c_{2,j}, \equiv_{a, i} \equiv_{a, k} \ c_{2,i}$ and $\equiv_{b, j} \equiv_{b, i}$ (1).

Suppose A_1 is exploring room k in region A and A_2 is exploring room i in region B, and their respective local views are $(a_{1,i}, b_{2,j}^1, a_{1,k}^2)$ and $(b_{2,i}^1, a_{1,i}^2, b_{1,j}^2)$, where $b_{2,i}$ and $a_{1,i}$ might be different from $b_{2,i}$ and $a_{1,k}$. By (1), the agents are co-stable. Now, suppose agent A_2 moves to another room. Whether A_2 needs to inform A_1 of its updated local state will depend on whether the agents need to re-establish co-stability:

1. If A_2 moves to room r in region B, its local view becomes $(b_{2,r}^1, a_{1,r}^2, b_{2,j}^2)$. By (1), A_2 can locally verify that the agents are still co-stable, and therefore does not need to communicate its updated local state to A_1.

2. If, however, A_2 moves to room r in region C, its local view becomes $(c_{2,r}^1, a_{1,r}^2, b_{2,j}^2)$. Since $b_{2,j} \not\equiv_{c, r} b_{2,r}$, A_2 needs to communicate its local state $c_{2,r}^1$ to A_1, using which A_1 updates its local view to $(a_{1,i}, c_{2,r}^1, a_{1,k}^2)$. By (1), A_1 can verify that the agents are now co-stable, so no further communication is needed.

Thus, using OnlineCoAgent-ComReduce, to maintain constraint P_c, each agent needs to inform the other only when it moves from one region to a different region. In contrast, using OnlineCoAgent-ComFull (Fig.1) to maintain constraint P_c, the agents would have to immediately inform the other each time they move to a different room, and not till they move to a different region. Therefore, if, for example, the agents spend 90% of their event execution time exploring their current region, then compared to using OnlineCoAgent-ComFull, using OnlineCoAgent-ComReduce could save about 90% of their communication bandwidth.

VII. Experimental Evaluation

We now present an experimental investigation of the effectiveness in bandwidth reduction of OnlineCoAgent-ComReduce. We compare the number of local-state messages communicated between the agents when using OnlineCoAgent-ComReduce (Fig.2) with that when using the benchmark strategy OnlineCoAgent-ComFull (Fig.1). For the experiments, we created different pairs of agent models and different predicate constraints as follows.

Agent Model: We randomly created three different pairs of coordinating agent models with 30, 35 and 40 states, and 15, 10, and 20 events, respectively. Each event was randomly specified as either controllable or uncontrollable.

Inter-agent Constraint: For each pair of agent models, we randomly created different constraints (CS’s) with varying degrees of permissiveness or restrictiveness imposed on the coordinating agents. Constraint permissiveness is defined by the ratio α of the number of states satisfying the CS to the total number of system states. This constraint permissiveness ratio α approaches 1 when the CS is the most permissive, i.e., most of the system states satisfy the constraint; and approaches 0 when the CS is the most restrictive, i.e., only a few of the system states satisfy the constraint. For our experiments, four test CS’s with α over the representative range of 0.2, 0.4, 0.6 and 0.9 were created.

For each pair of agent models and an inter-agent constraint, we ran the experiment 50 times, each time of 1000 run-time steps, with each run-time step corresponding to an event execution. At each step, we chose a random event from the set of enabled events for execution. After each experiment, we recorded the number of state messages exchanged between the agents when (i) using OnlineCoAgent-ComFull and (ii) using OnlineCoAgent-ComReduce. We then calculated and summarized in Table I the average and standard deviation of the bandwidth reduction (in percent) of OnlineCoAgent-ComReduce over OnlineCoAgent-ComFull.

TABLE I: Bandwidth reduction (in %) of OnlineCoAgent-ComReduce over OnlineCoAgent-ComFull for varying degrees of CS permissiveness α

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Pair 1</th>
<th>Pair 2</th>
<th>Pair 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CS1 (\alpha = 0.2)$</td>
<td>15.92</td>
<td>0.81</td>
<td>12.63</td>
</tr>
<tr>
<td>$CS2 (\alpha = 0.4)$</td>
<td>5.75</td>
<td>0.23</td>
<td>26.31</td>
</tr>
<tr>
<td>$CS3 (\alpha = 0.6)$</td>
<td>28.56</td>
<td>1.47</td>
<td>5.03</td>
</tr>
<tr>
<td>$CS4 (\alpha = 0.9)$</td>
<td>95.79</td>
<td>2.68</td>
<td>83.72</td>
</tr>
</tbody>
</table>

From these simulation results, we make the following observations. Firstly, the average bandwidth reduction ranges from 5.75% to 95.79% with relatively small standard deviations, indicating the effectiveness of the reduced communication strategy. Secondly, it is extremely high for CS4. Since CS4 is the constraint randomly generated with $\alpha = 0.9$, most of the system states satisfy the constraint. Thus the agents are loosely coupled by the constraint. As a result, they were often co-stable during coordination, and seldom needed to communicate with each other. The reduced communication strategy could apparently exploit such loose coupling between the agents and offer a tremendous advantage in terms of bandwidth savings over the full communication strategy.
VIII. RELATED WORK

Among related work under the same discrete-event paradigm, we have earlier discussed the motivation of the on-line approach proposed in this paper, in contrast and in complement to the off-line approach of [6], [7], [8]. We shall now discuss our on-line discrete-event coordination framework in relation to some other formal frameworks for coordinating agents.

As discussed in Section III, a predicate constraint P_c specifies an inter-agent constraint of the fundamental safety type, asserting that no bad states can ever be visited during multiagent interaction. In a different and important development, Yokoo et al. [2], [9] formulate a distributed constraint satisfaction problem (DCSP) for inter-agent constraints of the domain-value type. In their framework, each agent is represented as a variable with an associated domain of values, and an inter-agent constraint to satisfy is equivalent to a set of no goods to exit from, modeling the constraint-violated (or inconsistent) value combinations for the agent variables. An agent state in our framework is reminiscent of an agent domain value in DCSP. However, the essence of coordination in our work is to completely avoid entering the set of bad multiagent (or composite) states induced by a predicate constraint P_c, whereas the essence of a DCSP mechanism is to exit from the set of no goods induced by a domain-valued constraint. In DCSP, an agent action is a domain value whereas in our framework, it is enabling or disabling an event. In what follows, the focus in DCSP is to enable multiple variable agents to cooperatively search for a combination of their actions that satisfies a given domain-valued constraint. Our focus is to enable discrete-event agents to cooperatively compute their coordinating actions so as to always satisfy the supremal coordinable predicate P_c^{sup} of a given safety constraint P_c. Satisfying P_c^{sup} - which corresponds to staying within the largest feasible good state subset of the agents' composite state space - allows these agents to have maximal autonomy over their own actions during interaction, as explained in Section III. In DCSP, agent autonomy could manifest itself in the form of weak commitment to action selection [2]. All in all, in parallel with DCSP [2], [9], our coordination framework provides a new distributed constraint satisfaction foundation for multiagent cooperation research.

In another direction, researchers on formal models of multiagent systems increasingly focus their attention on extensions of a formal agent model called Markov Decision Process (MDP) to multiagent settings [10], [11], [12]. However, unlike most of these research efforts, our work considers state transitions as explicit events in the system transitional structure. That enables interesting characteristics of agents to be modeled using the properties of events. For instance, the autonomy of coordinating agents can be modeled using controllable and uncontrollable events, as explained in Section III. Generally, event-based agent models are applicable to a wide range of service systems, including manufacturing, communication and logistics systems [4].

The problem of communication reduction has also attracted increasing attention in recent years. For example, Shen and Lesser [13] and Seow et al. [6], [8] develop algorithms to construct near optimal agent communication strategies for their coordination problems, but their algorithms require off-line planning which may be expensive. Dutta et al. [14] develop a selective communication strategy which, however, cannot guarantee coordination quality. In contrast, our contributions include novel on-line coordination strategies that guarantee coordination quality in some specific sense defined, including one that can achieve significant savings in communication bandwidth, as theoretically proved in Theorem 2 and Theorem 3 and empirically verified in Section VII.

IX. CONCLUSION

This paper has presented new coordination results formalizing how discrete-event agents can interact and communicate in an on-line fashion to guarantee the invariance of a predicate specifying an inter-agent constraint. Specifically, the necessary and sufficient condition of predicate coordinability for two coordinating agents to meet a given predicate is established (Theorem 1); an optimal policy by which the agents can coordinate to maintain the supremal coordinable predicate of a given predicate is presented (Theorem 2); and on-line coordination strategies with full and reduced communication to implement the optimal policy are proposed. Finally, as demonstrated by experimental evaluation, compared to the former, the latter strategy can achieve significant bandwidth reduction while still guaranteeing coordination quality (Theorem 3).

REFERENCES