An Insight into Trigonometric Identities and Trigonometric Equations

Elementary Trigonometric Results

Recall definition of sine, cosine and tangent of an angle.
Let $\mathrm{P}(x, y)$ be a point on a circle with radius $r=\sqrt{x^{2}+y^{2}}$ in the Cartesian Plane As usual, $\angle \mathrm{XOP}$ is measured in the direction from $\overline{\mathrm{OX}}$ to $\overline{\mathrm{OP}}$, taking anticlockwise as positive.
Let $\theta=\angle \mathrm{XOP}$
Then $\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{y}{x}$

Relations between trigonometric functions of angles of opposite signs

Observe the following diagram where points A and A', B and B' are reflection of each other in the x -axis (think of A^{\prime} to A as well as A to A^{\prime})

We can summarize the change of coordinates corresponding to change of sign of angle (namely a reflection) as this :
$\binom{x}{y} \rightarrow\binom{x}{-y}$ as $\theta \rightarrow-\theta$, for all values of θ, positive or negative
We thus have the result
$\sin (-\theta)=-\sin \theta, \cos (-\theta)=\cos \theta$ and $\tan (-\theta)=-\tan \theta \ldots \ldots \ldots$.
Relations between trigonometric functions of angles by a difference of one right angle

The following diagram shows how coordinates are changed as a result of adding one right angle to a given one. The various cases are:
$\angle \mathrm{XOP}$ is changed to $\angle \mathrm{XOQ}, \angle \mathrm{XOQ}$ is changed to $\angle \mathrm{XOR}$ \qquad

We can summarize the change of coordinates as a result of the addition of one right angle as this:
$\binom{x}{y} \rightarrow\binom{-y}{x}$ as $\theta \rightarrow \theta+\frac{\pi}{2}$, where θ is in any quadrant
We thus have
If $\cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$,
then $\sin \left(\theta+\frac{\pi}{2}\right)=\frac{x}{r}=\cos \theta, \cos \left(\theta+\frac{\pi}{2}\right)=\frac{-y}{r}=-\sin \theta$
So,
$\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta, \cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta$ and $\tan \left(\theta+\frac{\pi}{2}\right)=-\tan \theta$
for all values of θ.
(The reader should not just take $\angle \mathrm{XOP}$ as an example of θ, instead, think about $\angle \mathrm{XOQ}, \angle \mathrm{XOR}$ and $\angle \mathrm{XOS}$ as well)
With results (1) and (2), which are valid for all values of θ, we deduce all results related to complimentary and supplementary angles.
For example,

$$
\cos \left(180^{\circ}-\theta\right)=\cos \left(90^{\circ}+90^{\circ}-\theta\right)=-\sin \left(90^{\circ}-\theta\right)=-\cos (-\theta)=-\cos \theta
$$

which is true for all values of θ

Formulae for addition and subtraction of angles.

The above figure shows two angles p and q of any size, given by $\angle \mathrm{AOC}$ and $\angle \mathrm{AOB}$ respectively, where A, B and C are points on a circle, centre O , radius r. (It need not be $p>q$ as depicted)
Let OA be lying on the OX axis and so the angles are measured using OX as initial direction.
We find $\mathrm{C}(r \cos p, r \sin p), \mathrm{B}(r \cos q, r \sin q)$
By using the cosine rule, we have, for all possible positions of B and C, $2(\mathrm{OB})(\mathrm{OC}) \cos (p-q)=(\mathrm{OB})^{2}+(\mathrm{OC})^{2}-(\mathrm{BC})^{2}$
So,
$2 r^{2} \cos (p-q)=r^{2}+r^{2}-\left[(r \cos p-r \cos q)^{2}+(r \sin p-r \sin q)^{2}\right]$
$=2 r^{2}-r^{2}\left[\cos ^{2} p-2 \cos p \cos q+\cos ^{2} q\right]-r^{2}\left[\sin ^{2} p-2 \sin p \sin q+\sin ^{2} q\right]$
$=2 r^{2}-r^{2}[1+1-2 \cos p \cos q-2 \sin p \sin q]$
$=2 r^{2}[\cos p \cos q+\sin p \sin q]$
So, $\cos (p-q)=\cos p \cos q+\sin p \sin q$, for all values of p and q
From results (1) , (2) and (3) we can establish all formulae related to additions and subtractions of angles,
For example
$\cos (p+q)=\cos (p--q)=\cos p \cos -q+\sin p \sin -q=\cos p \cos q-\sin p \sin q$

Trigonometric Equations

Let us investigate the three simple equations
$\sin \theta=a$, where $-1 \leq a \leq 1$
$\cos \theta=b$, where $-1 \leq b \leq 1$
$\tan \theta=c$, for all values of c

First note that all three equations have two solutions in any interval of length 2π, for example, we can find two solutions in each of $(0.5 \pi, 2.5 \pi)$, $(-0.9 \pi, 1.1 \pi)$ etc
So, to begin with, it is usually convenient to obtain two in the range of $[-\pi, \pi]$
Next, we note that if α is a solution, say to $\sin \theta=a$, where $-1 \leq a \leq 1$, then $\sin \alpha=a, \sin (\alpha+2 \pi)=a, \sin (\alpha-2 \pi)=a, \sin (\alpha+2 n \pi)=a$, where n is any integer So, if α, β are two solutions to $\sin \theta=a$, where $-1 \leq a \leq 1$, in the interval $[-\pi, \pi]$, then the complete solution set is $\theta=\alpha+2 n \pi, \beta+2 n \pi$, though of course, it works out to be $\theta=n \pi+(-1)^{n}(\alpha)$, which is equivalent to $\theta=n \pi+(-1)^{n}(\beta)$
(More discussions are left as an exercise)

Exercise (without answers attached)

Recall these results:
$\sin (-\theta)=-\sin \theta, \cos (-\theta)=\cos \theta$ and $\tan (-\theta)=-\tan \theta$,
for all values of θ
$\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta, \cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta$ and $\tan \left(\theta+\frac{\pi}{2}\right)=-\tan \theta$
for all values of θ
$\cos (p-q)=\cos p \cos q+\sin p \sin q$, for all values of p and q

1. Testify the rule :
$\binom{x}{y} \rightarrow\binom{-y}{x}$ as $\theta \rightarrow \theta+90^{\circ}$, where $\mathrm{P}(x, y)$ is the point on a circle of radius $r, \theta=\angle \mathrm{XOP}$, for the following cases
2. By using Results (1) and (2) above, express the following in terms of $\sin \theta, \cos \theta$ and $\tan \theta$ only
(i) $\sin \left(180^{\circ}-\theta\right)$
(ii)
$\cos \left(180^{\circ}-\theta\right)$ (iii) $\tan \left(180^{\circ}-\theta\right)$
(iv) $\sin \left(180^{\circ}+\theta\right)$
(v) $\cos \left(180^{\circ}+\theta\right)$
(vi) $\tan \left(180^{\circ}+\theta\right)$
3. By using Results (1) and (2) above, express the following in terms of $\sin \theta, \cos \theta, \tan \theta$ and $\cot \theta$ only
(i) $\sin \left(270^{\circ}-\theta\right)$ (ii) $\cos \left(270^{\circ}-\theta\right)$ (iii) $\tan \left(270^{\circ}-\theta\right)$
(iv) $\sin \left(270^{\circ}+\theta\right)$ (v) $\cos \left(270^{\circ}+\theta\right)$ (vi) $\tan \left(270^{\circ}+\theta\right)$
4. By using Results (1), (2) and (3) above, obtain the formulae
$\sin (p+q)=\sin p \cos q+\cos p \sin q$ and
$\sin (p-q)=\sin p \cos q-\cos p \sin q$
5. α, β are two different solutions of the equation $\sin \theta=a$, where $|a| \leq 1$
State a relation between α and β if
(i) $\quad \alpha$ and β are in the same quadrant
(ii) α and β are in different quadrant
(iii) there is no information about the quadrants of α and β.
6. α, β are two different solutions of the equation
$\cos \theta=a$, where $|a| \leq 1$
State a relation between α and β
7. α, β are two different solutions of the equation $\tan \theta=a$
What is the values of $\alpha-\beta$?
8 In the solution for the equation $\cos \left(2 x-70^{\circ}\right)=0.5$, values of x required for are in the interval $\left(-150^{\circ}, 570^{\circ}\right)$
How many possible values of x are there?

Exercise (with answers attached)

Recall these results:
$\sin (-\theta)=-\sin \theta, \cos (-\theta)=\cos \theta$ and $\tan (-\theta)=-\tan \theta$, for all values of θ
$\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta, \cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta$ and $\tan \left(\theta+\frac{\pi}{2}\right)=-\tan \theta$
for all values of θ
$\cos (p-q)=\cos p \cos q+\sin p \sin q$, for all values of p and q

1. Testify the rule :
$\binom{x}{y} \rightarrow\binom{-y}{x}$ as $\theta \rightarrow \theta+90^{0}$, where $\mathrm{P}(x, y)$ is the point on a circle of radius $r, \theta=\angle \mathrm{XOP}$, for the following cases
(i) $\quad \theta=240^{\circ}$
(ii) $\theta=-240^{\circ}$
(iii) $\theta=500^{\circ}$
2. By using Results (1) and (2) above, express the following in terms of $\sin \theta, \cos \theta$ and $\tan \theta$ only
(i)
$\sin \left(180^{\circ}-\theta\right)$
$\cos \left(180^{\circ}-\theta\right)$
(iii) $\tan \left(180^{\circ}-\theta\right)$
(iv) $\sin \left(180^{\circ}+\theta\right)$
(v) $\cos \left(180^{\circ}+\theta\right)$
(vi) $\tan \left(180^{\circ}+\theta\right)$

Answers
(i) $\sin \theta$
(ii) $-\cos (\theta)$
(iii) $-\tan \theta$
(iv) $-\sin \theta$
(v) $-\cos \theta$
(vi) $\tan \theta$
3. By using Results (1) and (2) above, express the following in terms of $\sin \theta, \cos \theta, \tan \theta$ and $\cot \theta$ only

$$
\begin{array}{llll}
\text { (i) } & \sin \left(270^{\circ}-\theta\right) \text { (ii) } & \cos \left(270^{\circ}-\theta\right) \text { (iii) } & \tan \left(270^{\circ}-\theta\right) \\
\text { (iv) } & \sin \left(270^{\circ}+\theta\right) \text { (v) } & \cos \left(270^{\circ}+\theta\right)(\text { vi) } & \tan \left(270^{\circ}+\theta\right)
\end{array}
$$

Answers:
$\begin{array}{ll}\text { (i) } & -\cos \theta \\ \text { (iv) } & -\cos \theta\end{array}$
(ii) $-\sin \theta$
(iii) $\cot \theta$
(iv) $-\cos \theta$
(v) $\sin \theta$
(vi) $-\cot \theta$
4. By using Results (1), (2) and (3) above, obtain the formulae

$$
\begin{aligned}
& \sin (p+q)=\sin p \cos q+\cos p \sin q \text { and } \\
& \sin (p-q)=\sin p \cos q-\cos p \sin q
\end{aligned}
$$

Solution

$$
\begin{aligned}
\sin (p+q) & =-\cos \left(\frac{\pi}{2}+p+q\right)=-\left[\cos \left(\frac{\pi}{2}+p\right) \cos q-\sin \left(\frac{\pi}{2}+p\right) \sin q\right] \\
& =\sin p \cos q+\cos p \sin q \\
\sin (p-q) & =-\cos \left(\frac{\pi}{2}+p-q\right)=-\left[\cos \left(\frac{\pi}{2}+p\right) \cos -q-\sin \left(\frac{\pi}{2}+p\right) \sin -q\right.
\end{aligned}
$$

$$
=\sin p \cos q-\cos p \sin q
$$

5. α, β are two different solutions of the equation $\sin \theta=a$, where $|a| \leq 1$
State a relation between α and β if
(i) α and β are in the same quadrant
(ii) α and β are in different quadrant
(iv) there is no information about the quadrants of α and β.

Answers:
(i) $\quad \beta=2 n \pi+\alpha$, where $n \in \square$
(ii) $\quad \beta=2 n \pi+\pi-\alpha$, where $n \in \square \quad \pi-\alpha$
(iii) $\quad \beta=\pi-\alpha, 2 \pi+\alpha, 3 \pi-\alpha, \ldots . \quad-\pi-\alpha,-2 \pi+\alpha,-3 \pi-\alpha, \ldots \ldots$.

So, $\beta=n \pi+(-1)^{n} \alpha$, where $n \in \square$
6. α, β are two different solutions of the equation
$\cos \theta=a$, where $|a| \leq 1$
State a relation between α and β
Answer
$\beta=2 n \pi \pm \alpha$, where $n \in \square$
7. α, β are two different solutions of the equation $\tan \theta=a$
What is the values of $\alpha-\beta$?
Answer
$\alpha-\beta=n \pi$, for $n \in \square$
8 In the solution for the equation $\cos \left(2 x-70^{\circ}\right)=0.5$, values of x required for are in the interval $\left(-150^{\circ}, 570^{\circ}\right)$
How many possible values of x are there?
Answer
The interval length for x is $570^{\circ}--150^{\circ}=720^{\circ}=2 \times 360^{\circ}$
So, the interval length for $\left(2 x-70^{\circ}\right)$ is $4 \times 360^{\circ}$
So, there are 8 possible values for $\left(2 x-70^{\circ}\right)$, and therefore also 8 possible values for x.

