An Insight into Trigonometric Identities and Trigonometric Equations

Elementary Trigonometric Results

Recall definition of sine, cosine and tangent of an angle. Let P(x, y) be a point on a circle with radius $r = \sqrt{x^2 + y^2}$ in the Cartesian Plane As usual, $\angle XOP$ is measured in the direction from \overrightarrow{OX} to \overrightarrow{OP} , taking anticlockwise as positive. Let $\theta = \angle XOP$ Then $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$

Relations between trigonometric functions of angles of opposite signs

Observe the following diagram where points A and A', B and B' are reflection of each other in the x-axis (think of A' to A as well as A to A')

We can summarize the change of coordinates corresponding to change of sign of angle (namely a reflection) as this :

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x \\ -y \end{pmatrix} \text{ as } \theta \rightarrow -\theta \text{, for all values of } \theta \text{, positive or negative}$$
We thus have the result

We thus have the result

 $\sin(-\theta) = -\sin\theta$, $\cos(-\theta) = \cos\theta$ and $\tan(-\theta) = -\tan\theta$ (1)

Relations between trigonometric functions of angles by a difference of one right angle

The following diagram shows how coordinates are changed as a result of adding one right angle to a given one. The various cases are:

 \angle XOP is changed to \angle XOQ, \angle XOQ is changed to \angle XOR,.....

We can summarize the change of coordinates as a result of the addition of one right angle as this:

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x \end{pmatrix}$$
 as $\theta \rightarrow \theta + \frac{\pi}{2}$, where θ is in any quadrant

If
$$\cos \theta = \frac{x}{r}$$
 and $\sin \theta = \frac{y}{r}$,
then $\sin(\theta + \frac{\pi}{2}) = \frac{x}{r} = \cos \theta$, $\cos(\theta + \frac{\pi}{2}) = \frac{-y}{r} = -\sin \theta$

$$\sin(\theta + \frac{\pi}{2}) = \cos\theta$$
, $\cos(\theta + \frac{\pi}{2}) = -\sin\theta$ and $\tan(\theta + \frac{\pi}{2}) = -\tan\theta$

With results (1) and (2), which are valid for all values of θ , we deduce all results related to complementary and supplementary angles. For example,

 $\cos(180^{\circ} - \theta) = \cos(90^{\circ} + 90^{\circ} - \theta) = -\sin(90^{\circ} - \theta) = -\cos(-\theta) = -\cos\theta$ which is true for all values of θ

Formulae for addition and subtraction of angles.

The above figure shows two angles p and q of any size, given by

 $\angle AOC$ and $\angle AOB$ respectively, where A, B and C are points on a circle, centre O, radius *r*. (It need not be p > q as depicted)

Let OA be lying on the OX axis and so the angles are measured using OX as initial direction.

We find $C(r \cos p, r \sin p)$, $B(r \cos q, r \sin q)$ By using the cosine rule, we have, for all possible positions of B and C, $2(OB)(OC) \cos(p-q) = (OB)^2 + (OC)^2 - (BC)^2$ So, $2r^2 \cos(p-q) = r^2 + r^2 - [(r \cos p - r \cos q)^2 + (r \sin p - r \sin q)^2]$ $= 2r^2 - r^2 [\cos^2 p - 2\cos p \cos q + \cos^2 q] - r^2 [\sin^2 p - 2\sin p \sin q + \sin^2 q]$ $= 2r^2 - r^2 [1 + 1 - 2\cos p \cos q - 2\sin p \sin q]$ $= 2r^2 [\cos p \cos q + \sin p \sin q]$ So, $\cos(p-q) = \cos p \cos q + \sin p \sin q$, for all values of p and q(3)

From results (1), (2) and (3) we can establish all formulae related to additions and subtractions of angles,

For example $\cos(p+q) = \cos(p--q) = \cos p \cos - q + \sin p \sin - q = \cos p \cos q - \sin p \sin q$

Trigonometric Equations

Let us investigate the three simple equations $\sin \theta = a$, where $-1 \le a \le 1$ $\cos \theta = b$, where $-1 \le b \le 1$ $\tan \theta = c$, for all values of *c* First note that all three equations have two solutions in any interval of length 2π , for example, we can find two solutions in each of $(0.5\pi, 2.5\pi)$, $(-0.9\pi, 1.1\pi)$ etc So, to begin with, it is usually convenient to obtain two in the range of $[-\pi,\pi]$

Next, we note that if α is a solution, say to $\sin \theta = a$, where $-1 \le a \le 1$, then $\sin \alpha = a$, $\sin(\alpha + 2\pi) = a$, $\sin(\alpha - 2\pi) = a$, $\sin(\alpha + 2n\pi) = a$, where *n* is any integer So, if α , β are two solutions to $\sin \theta = a$, where $-1 \le a \le 1$, in the interval $[-\pi, \pi]$, then the complete solution set is $\theta = \alpha + 2n\pi$, $\beta + 2n\pi$, though of course, it works out to be $\theta = n\pi + (-1)^n(\alpha)$, which is equivalent to $\theta = n\pi + (-1)^n(\beta)$ (More discussions are left as an exercise)

Exercise (without answers attached)

Recall these results:

$$\sin(-\theta) = -\sin\theta$$
, $\cos(-\theta) = \cos\theta$ and $\tan(-\theta) = -\tan\theta$,
for all values of θ (1)

- 1. Testify the rule : $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x \end{pmatrix}$ as $\theta \rightarrow \theta + 90^{\circ}$, where P(x, y) is the point on a circle of radius r, $\theta = \angle XOP$, for the following cases
- 2. By using Results (1) and (2) above, express the following in terms of $\sin \theta$, $\cos \theta$ and $\tan \theta$ only

(i) $\sin(180^{\circ}-\theta)$ (ii) $\cos(180^{\circ}-\theta)$ (iii) $\tan(180^{\circ}-\theta)$ (iv) $\sin(180^{\circ}+\theta)$ (v) $\cos(180^{\circ}+\theta)$ (vi) $\tan(180^{\circ}+\theta)$

3. By using Results (1) and (2) above, express the following in terms of $\sin \theta$, $\cos \theta$, $\tan \theta$ and $\cot \theta$ only

(i) $\sin(270^{\circ} - \theta)$ (ii) $\cos(270^{\circ} - \theta)$ (iii) $\tan(270^{\circ} - \theta)$ (iii) $\tan(270^{\circ} - \theta)$ (iii) $\tan(270^{\circ} - \theta)$

(iv)
$$\sin(270^{\circ} + \theta)$$
 (v) $\cos(270^{\circ} + \theta)$ (vi) $\tan(270^{\circ} + \theta)$

4. By using Results (1), (2) and (3) above, obtain the formulae sin(p+q) = sin p cos q + cos p sin q and sin(p-q) = sin p cos q - cos p sin q 5. α , β are two different solutions of the equation $\sin \theta = a$, where $|a| \le 1$

State a relation between α and β if

- (i) α and β are in the same quadrant
- (ii) α and β are in different quadrant
- (iii) there is no information about the quadrants of α and β .
- 6. α, β are two different solutions of the equation $\cos \theta = a$, where $|a| \le 1$ State a relation between α and β
- 7. α , β are two different solutions of the equation $\tan \theta = a$ What is the values of $\alpha - \beta$?
- 8 In the solution for the equation $cos(2x-70^{\circ}) = 0.5$, values of x required for are in the interval $(-150^{\circ}, 570^{\circ})$ How many possible values of x are there?

Exercise (with answers attached)

Recall these results:

$$\sin(-\theta) = -\sin\theta, \ \cos(-\theta) = \cos\theta \ \text{ and } \ \tan(-\theta) = -\tan\theta,$$

for all values of θ (1)

$$\sin(\theta + \frac{\pi}{2}) = \cos\theta, \ \cos(\theta + \frac{\pi}{2}) = -\sin\theta \ \text{and} \ \tan(\theta + \frac{\pi}{2}) = -\tan\theta$$
for all values of θ
(2)

 $\cos(p-q) = \cos p \cos q + \sin p \sin q, \text{ for all values of } p \text{ and } q \dots \dots \dots \dots \dots (3)$

1. Testify the rule :

 $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x \end{pmatrix} \text{ as } \theta \rightarrow \theta + 90^{\circ}, \text{ where P}(x, y) \text{ is the point on a circle of radius}$ $r, \theta = \angle \text{XOP}, \text{ for the following cases}$ (i) $\theta = 240^{\circ}$ (ii) $\theta = -240^{\circ}$ (iii) $\theta = 500^{\circ}$

2. By using Results (1) and (2) above, express the following in terms of $\sin \theta$, $\cos \theta$ and $\tan \theta$ only

(i)	$\sin(180^{\circ}-\theta)$	(ii)	$\cos(180^{\circ}-\theta)$	(iii)	$\tan(180^{\circ}-\theta)$	
(i	v)	$\sin(180^{\circ}+\theta)$	(v)	$\cos(180^{\circ} + \theta)$	(vi)	$\tan(180^0 + \theta)$	
Answers							
(i)	$\sin \theta$	(ii)	$-\cos(\theta)$	(iii)	$-\tan\theta$	
(i	v)	$-\sin\theta$	(v)	$-\cos\theta$	(vi)	$\tan \theta$	

3. By using Results (1) and (2) above, express the following in terms of $\sin \theta$, $\cos \theta$, $\tan \theta$ and $\cot \theta$ only

(i)	$\sin(270^{\circ}-\theta)$	(ii)	$\cos(270^{\circ}-\theta)$	(iii)	$\tan(270^{\circ}-\theta)$
(iv)	$\sin(270^{\circ}+\theta)$	(v)	$\cos(270^\circ + \theta)$	(vi)	$\tan(270^0 + \theta)$
Answers:					
(i)	$-\cos\theta$	(ii)	$-\sin\theta$	(iii)	$\cot \theta$
(iv)	$-\cos\theta$	(v)	$\sin heta$	(vi)	$-\cot\theta$

4. By using Results (1), (2) and (3) above, obtain the formulae sin(p+q) = sin p cos q + cos p sin q and sin(p-q) = sin p cos q - cos p sin q

Solution

$$\sin(p+q) = -\cos(\frac{\pi}{2} + p + q) = -[\cos(\frac{\pi}{2} + p)\cos q - \sin(\frac{\pi}{2} + p)\sin q]$$

= sin p cos q + cos p sin q
$$\sin(p-q) = -\cos(\frac{\pi}{2} + p - q) = -[\cos(\frac{\pi}{2} + p)\cos - q - \sin(\frac{\pi}{2} + p)\sin - q]$$

 $= \sin p \cos q - \cos p \sin q$

5. α , β are two different solutions of the equation

 $\sin \theta = a$, where $|a| \le 1$

State a relation between α and β if

- (i) α and β are in the same quadrant
- (ii) α and β are in different quadrant
- (iv) there is no information about the quadrants of α and β .

Answers:

- (i) $\beta = 2n\pi + \alpha$, where $n \in \Box$
- (ii) $\beta = 2n\pi + \pi \alpha$, where $n \in \Box$ $\pi \alpha$
- (iii) $\beta = \pi \alpha, \ 2\pi + \alpha, \ 3\pi \alpha, \dots$ $-\pi \alpha, \ -2\pi + \alpha, \ -3\pi \alpha, \dots$ So, $\beta = n\pi + (-1)^n \alpha$, where $n \in \square$
- 6. α , β are two different solutions of the equation $\cos \theta = a$, where $|a| \le 1$

State a relation between α and β

Answer

 $\beta = 2n\pi \pm \alpha$, where $n \in \Box$

7. α , β are two different solutions of the equation $\tan \theta = a$ What is the values of $\alpha - \beta$?

Answer

 $\alpha - \beta = n\pi$, for $n \in \Box$

8 In the solution for the equation $cos(2x-70^{\circ}) = 0.5$, values of x required for are in the interval $(-150^{\circ}, 570^{\circ})$

How many possible values of x are there?

Answer

The interval length for x is $570^{\circ} - 150^{\circ} = 720^{\circ} = 2 \times 360^{\circ}$

So, the interval length for $(2x-70^{\circ})$ is $4 \times 360^{\circ}$

So, there are 8 possible values for $(2x - 70^{\circ})$, and therefore also 8 possible values for *x*.