## An Insight into Differentiation and Integration

## Differentiation

Differentiation is basically a task to find out how one variable is changing in relation to another variable, the latter is usually taken as a cause of the change.
For instance, $y=x^{2}$
We might consider $x$ taking values: $1,2,3, \ldots \ldots . . n, n+1$
successively by increment 1 , then $y$ is increasing by an increment
$(n+1)^{2}-n^{2}=2 n+1$ at $x=n$
The average increment over the interval $(n, n+1)$ of $x$ is

$$
\frac{(n+1)^{2}-n^{2}}{1}=2 n+1
$$

To be more generally,
the average increment over the interval $(x, x+1)$ of $x$ is $\frac{(x+1)^{2}-x^{2}}{1}=2 x+1$
By decreasing the amount of increment of $x$ to be $\frac{1}{2}$, the average increment over the interval $\left(x, x+\frac{1}{2}\right)$ of $x$ is
$\frac{\left(x+\frac{1}{2}\right)^{2}-x^{2}}{\frac{1}{2}}=2 x+\left(\frac{1}{2}\right)^{2}$
Generalizing, the average increment over the interval ( $x, x+\delta x$ ) of $x$ is
$\frac{(x+\delta x)^{2}-x^{2}}{\delta x}=2 x+(\delta x)^{2}$
Going on this way, we then come to the idea that the instantaneous average increment at $x$ is $2 x$, when the interval becomes widthless. This is defined as the rate of change of $x^{2}$ with respective to $x$ at any value of $x$.

To express the process of work, which we define as differentiation, and the result, we write

$$
\frac{d}{d x} x^{2}=\lim _{\delta x \rightarrow 0} \frac{(x+\delta x)^{2}-x^{2}}{\delta x}=2 x
$$

We have three fundamental results of differentiation:

$$
\begin{aligned}
& \frac{d}{d x} x^{n}=n x^{n-1} \text { for positive integer } n \\
& \frac{d}{d x} \sin x=\cos x \text { (Based on the fundamental limit result } \lim _{\delta x \rightarrow 0} \frac{\sin \delta x}{\delta x}=1 \text { ), when }
\end{aligned}
$$

$x$ is in radians

$$
\frac{d}{d x} e^{x}=e^{x}
$$

From these, with the helps of a number of rules such as The Product Rules, The Quotient Rule, The Chain Rule, Implicit Function Rule... we deduce many standard results including
$\frac{d}{d x} x^{n}=n x^{n-1}$ for any rational number $n$ (Finally, for any real number $n$ )
Of course, we should be able to establish all other results from first principles, which means a work relying only on the definition
$\frac{d}{d x} f(x)=\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}$

## Integration

Differentiation is important not only that it is a tool to track the change of one variable with respect to another, also, knowing of the derivative of a function leads us to the identification of the function itself.
For example, if we find that $\frac{d}{d x} f(x)=\frac{d}{d x} g(x)=u(x)$, then $f(x)$ and $g(x)$ can only differ by a constant
So, given $\frac{d}{d x} f(x)=u(x)$, to find $f(x)$, we first look for $g(x)$ which has the known derivative $u(x)$
The job is $\int u(x) d x$, which gives a result pending a constant
We write $f(x)=g(x)+c$
If we know that $f(a)=0$, then $c=-g(a), f(x)=g(x)-g(a)$. This is a definite result, which gives value of $f(x)$ at any value, for example, at $x=b$,

$$
f(b)=g(b)-g(a), \text { for which we write } \int_{a}^{b} u(x) d x
$$

The value is definite and the work is called a definite integration
Cases of using derivative to find the original functions
A well-known case is finding distance traveled with knowledge of velocity $v$. If $s$ is the distance traveled in time $t$, we have
$\frac{d s}{d t}=v$, based on the genuine definition of $v$
For some other cases, the derivative of a variable must be reasoned out, though they are usually taken intuitively. Take the case when we come to such work like finding area under a curve.


If we define $\mathrm{A}(x)$ to be the area under the curve from $x=a$ to $x$
Intuitively, we take $\frac{d \mathrm{~A}}{d x}=y$, so $\mathrm{A}=\int y d x$, Area $\mathrm{A}(x)$ can then be found
To be a bit more rigorous
We first claim that $\delta \mathrm{A}$ lies between $y \delta x$ and $(y+\delta y) \delta x$,
So, $\frac{\delta \mathrm{A}}{\delta x}$ lies between $y$ and $(y+\delta y)$
$\frac{d \mathrm{~A}}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta \mathrm{~A}}{\delta x}=y$
Take another case, for finding the volume $\mathrm{V}(\mathrm{h})$ of a right circular cone of height h Denoting $\mathrm{V}(h)$ to be the volume of the circular cone, of the same shape, with a height $h$, considered as a variable, $S$ to be the surface area of the circular cross-section at height h ,


We claim that $\delta \mathrm{V}$ lies between $\mathrm{S} \delta h$ and $(\mathrm{S}+\delta \mathrm{S}) \delta h$
$\frac{\delta \mathrm{V}}{\delta h}$ lies between S and $(\mathrm{S}+\delta \mathrm{S})$
so $\frac{d \mathrm{~V}}{d h}=\lim _{\delta h \rightarrow 0} \frac{\delta \mathrm{~V}}{\delta h}=\mathrm{S}$.
By similarity, $r=k h$, for a constant $k$

$$
\begin{aligned}
\mathrm{V} & =\int \mathrm{S} d h=\int \pi(k h)^{2} d h=\pi k^{2} \frac{h^{3}}{3}+c \\
& =\frac{1}{3} \pi(k h)^{2} h+c=\frac{1}{3} \pi r^{2} h+c=\frac{1}{3} \pi r^{2} h \text { if we take } \mathrm{V}=0 \text { for } h=0
\end{aligned}
$$

## Exercise (without solution attached)

1. Differentiate $\tan x$ with respect to $x$ from first principles.
(You may use the result $\lim _{\delta x \rightarrow 0} \frac{\sin \delta x}{\delta x}=1$ )
2. Base on the result $\frac{d}{d x} x^{n}=n x^{n-1}$ for positive integer $n$, and the rules of
differentiation, prove that $\frac{d}{d x} x^{\frac{1}{3}}=\frac{1}{3} x^{-\frac{2}{3}}$
Prove also that $\frac{d}{d x} x^{\frac{2}{3}}=\frac{2}{3} x^{-\frac{1}{3}}$
3 A particle is moving vertically upwards with velocity $v=50 t-5 t^{2}$
Show that it is moving downwards after $t=10$
Find the distance of the particle from its position at $t=0$
(i) When $t=8$
(ii) When $t=12$

$$
s=\int_{0}^{12}\left(50 t-5 t^{2}\right) d t=\left[25 t^{2}-\frac{5}{3} t^{3}\right]_{0}^{12}=720
$$

4. Given that $y=\sec x^{0}$, find $\frac{d y}{d x}$

Given a reason why in Calculus, radian measure is preferred rather than degree measure.
5. A kite is at a horizontal distance $l$ from the flyer and a vertical distance $h$ above the same. When it is rising up at a velocity $v$, the flyer let off more string to keep the horizontal distance constant.
Assuming the string to be straight, and the angle of elevation of the kite to be $\theta$ radians, find the rate of change of $\theta$ with respective to time $t$
6. Let $\left(e^{*}\right)^{x}=\left(1+\frac{x}{n}\right)^{n}$, where $n$ is a large number

Show that $\frac{d}{d x}\left(e^{*}\right)^{x} \approx\left(e^{*}\right)^{x}$

## Exercise (with solution attached)

1. Differentiate $\tan x$ with respect to $x$ from first principles.
(You may use the result $\lim _{\delta x \rightarrow 0} \frac{\sin \delta x}{\delta x}=1$ )
Solution:

$$
\begin{aligned}
& \frac{\tan (x+\delta x)-\tan x}{\delta x}=\frac{\sin (x+\delta x) \cos x-\cos (x+\delta x) \sin x}{\delta x[\cos (x+\delta x) \cos x]}= \\
& \frac{\sin (x+\delta x-x)}{\delta x[\cos (x+\delta x) \cos x]}=\frac{\sin \delta x}{\delta x} \frac{1}{\cos (x+\delta x) \cos x} \\
& \text { So, } \lim _{\delta x \rightarrow 0} \frac{\tan (x+\delta x)-\tan x}{\delta x}=\lim _{\delta x \rightarrow 0}\left[\frac{\sin \delta x}{\delta x} \frac{1}{\cos (x+\delta x) \cos x}\right]=\sec ^{2} x
\end{aligned}
$$

2. Base on the result $\frac{d}{d x} x^{n}=n x^{n-1}$ for positive integer $n$, and the rules of differentiation, prove that $\frac{d}{d x} x^{\frac{1}{3}}=\frac{1}{3} x^{-\frac{2}{3}}$
Prove also that $\frac{d}{d x} x^{\frac{2}{3}}=\frac{2}{3} x^{-\frac{1}{3}}$
Solution:
Let $y=x^{\frac{1}{3}}$, then $y^{3}=x, 3 y^{2} \frac{d y}{d x}=1, \frac{d y}{d x}=\frac{1}{3 y^{2}}=\frac{1}{3 x^{\frac{2}{3}}}=\frac{1}{3} x^{-\frac{2}{3}}$
For proving of $\frac{d}{d x} x^{\frac{2}{3}}=\frac{2}{3} x^{-\frac{1}{3}}$, let $z^{3}=x^{2}$
3. A particle is moving vertically upwards with velocity $v=50 t-5 t^{2}$

Show that it is moving downwards after $t=10$
Find the distance of the particle from its position at $t=0$
(iii) When $t=8$
(iv) When $t=12$

Solution:
$v=50 t-5 t^{2}=5 t(10-t)<0$ when $t>10$
So, the particle is moving downwards after $t=10$
(i) If $s$ is the distance moved upwards after $t$

$$
\frac{d s}{d t}=v=50 t-5 t^{2}, \text { noting that this is true for all } t
$$

that is whether $t<10$ or $t \geq 10$

$$
s=\int_{0}^{8}\left(50 t-5 t^{2}\right) d t=\left[25 t^{2}-\frac{5}{3} t^{3}\right]_{0}^{8}=746 \frac{2}{3}
$$

(ii) $\frac{d s}{d t}=v=50 t-5 t^{2}$, even though $t \geq 10$

$$
s=\int_{0}^{12}\left(50 t-5 t^{2}\right) d t=\left[25 t^{2}-\frac{5}{3} t^{3}\right]_{0}^{12}=720
$$

4. Given that $y=\sec x^{0}$, find $\frac{d y}{d x}$

Given a reason why in Calculus, radian measure is preferred rather than degree measure.
Solution
Let $y=\sec x^{0}=\sec u$, where $u$ radians $=x$ degrees. Then $180 u=x \pi$

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=(\sec u \tan u) \frac{\pi}{180}=\left(\sec x^{0} \tan x^{0}\right) \frac{\pi}{180}
$$

As seen from the above, $\frac{d}{d x} \sec x^{0}=\left(\sec x^{0} \tan x^{0}\right) \frac{\pi}{180}$
Whereas $\frac{d}{d u} \sec u^{\text {rd }}=\sec u \tan u$
5. A kite is at a horizontal distance $l$ from the flyer and a vertical distance $h$ above the same. When it is rising up at a velocity $v$, the flyer let off more string to keep the horizontal distance constant.
Assuming the string to be straight, and the angle of elevation of the kite to be $\theta$ radians, find the rate of change of $\theta$ with respective to time $t$
Solution
We have $\tan \theta=\frac{h}{l}$, where $h$ is a variable and $l$ is a constant
Though an expression for $\frac{d \theta}{d t}$ is what we are looking for, we need not write $\theta=\tan ^{-1}\left(\frac{h}{l}\right)$, and do $\frac{d \theta}{d t}$. We can choose to do indirectly
Differentiating both sides of this equation, we get $\sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{l} \frac{d h}{d t}=\frac{1}{l} v$
So $\frac{d \theta}{d t}=\left(\cos ^{2} \theta\right) \frac{1}{l} v$, though the result is not totally in terms of the variable $h$.
6. Let $\left(e^{*}\right)^{x}=\left(1+\frac{x}{n}\right)^{n}$, where $n$ is a large number

Show that $\frac{d}{d x}\left(e^{*}\right)^{x} \approx\left(e^{*}\right)^{x}$
Solution

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{*}\right)^{x}=\frac{d}{d x}\left(1+\frac{x}{n}\right)^{n}=n\left(1+\frac{x}{n}\right)^{n-1}\left(\frac{1}{n}\right)=\left(1+\frac{x}{n}\right)^{n-1}=\left(1+\frac{x}{n}\right)^{n} \frac{1}{\left(1+\frac{x}{n}\right)} \\
& \approx\left(1+\frac{x}{n}\right)^{n}=\left(e^{*}\right)^{x}, \text { as }\left(1+\frac{x}{n}\right) \approx 1
\end{aligned}
$$

